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Preface

The 18th International Conference on Inductive Logic Programming was held
in Prague, September 10–12, 2008. ILP returned to Prague after 11 years, and
it is tempting to look at how the topics of interest have evolved during that
time. The ILP community clearly continues to cherish its beloved first-order
logic representation framework. This is legitimate, as the work presented at
ILP 2008 demonstrated that there is still room for both extending established
ILP approaches (such as inverse entailment) and exploring novel logic induction
frameworks (such as brave induction). Besides the topics lending ILP research
its unique focus, we were glad to see in this year’s proceedings a good num-
ber of papers contributing to areas such as statistical relational learning, graph
mining, or the semantic web. To help open ILP to more mainstream research
areas, the conference featured three excellent invited talks from the domains
of the semantic web (Frank van Harmelen), bioinformatics (Mark Craven) and
cognitive sciences (Josh Tenenbaum). We deliberately looked for speakers who
are not directly involved in ILP research. We further invited a tutorial on statis-
tical relational learning (Kristian Kersting) to meet the strong demand to have
the topic presented from the ILP perspective. Lastly, Stefano Bertolo from the
European Commission was invited to give a talk on the ideal niches for ILP in
the current EU-supported research on intelligent content and semantics.

For the main technical track, we received 46 abstracts followed by 36 full-
paper submissions. Eight of them were accepted and sixteen rejected after re-
views. The remaining 12 papers were given a conditionally-accepted status and
their authors were given an additional three weeks to revise them. The revised
papers were then re-reviewed by the program chairs and found acceptable for
publication. It is our belief that the extra work demands we laid on the authors
this year were an effective means of ensuring the quality of the conference. ILP
2008 also received 22 short submissions for the late-breaking papers track, which
were reviewed separately. The accepted short papers appear in a separate pro-
ceedings book. Extended versions of selected papers from both conference tracks
will appear in a special issue of the Machine Learning Journal.

Organizing ILP 2008 was a great experience, thanks to the excellent help we
received on several fronts. We are indebted to our generous sponsors who made
possible the trips of the invited speakers (sponsored by the US Air Force Eu-
ropean Office of Aerospace Research and Development, the PASCAL2 Network
of Excellence, the Czech Society for Cybernetics and Informatics and the Euro-
pean Commission) and the best student paper prize (sponsored by the Machine
Learning Journal). We are equally grateful to Springer for collaborating so flex-
ibly and pro-actively in preparing these proceedings and the Machine Learning
Journal special issue. Thanks go as well to the diligent program committee for
their reviews of the submitted papers. Their review activity was supported by the
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MyReview System, which proved to be a powerful, yet easy-to-use, conference
management software.

ILP would be just three letters were it not for the authors of the submitted
papers. To them goes our foremost gratitude. Keep up the good work and submit
to ILP 2009!

July 2008 Filip Železný
Nada Lavrač
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Tamás Horváth, Germany
Katsumi Inoue, Japan
Andreas Karwath, Germany
Kristian Kersting, Germany
Stefan Kramer, Germany
John Lloyd, Australia
Francesca Lisi, Italy
Donato Malerba, Italy
Stan Matwin, Canada

Stephen Muggleton, UK
Ramon Otero, Spain
C. David Page, USA
Bernhard Pfahringer, New Zealand
Jan Ramon, Belgium
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Aline Paes

Ganesh Ramakrishnan
Ulrich Rückert
Chiaki Sakama

Sponsors

Czech Technical University in Prague
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Building Theories of the World: Human and

Machine Learning Perspectives

Joshua B. Tenenbaum

Massachusetts Institute of Technology
jbt@mit.edu

Abstract. Human knowledge of the world is often expressed in the form
of intuitive theories: systems of abstract concepts that organize, predict
and explain our observations of the world. How are these powerful knowl-
edge structures represented and acquired? I will describe computational
frameworks for modeling people’s intuitive theories and theory-building
processes, and some ways of testing these models experimentally with
human learners. Our models of human learning and inference build on
core approaches in Bayesian artificial intelligence, statistical relational
learning and inductive logic programming, but also suggest new ways to
extend these machine learning and reasoning approaches to more human-
like capacities.

[ This talk describes joint work with Charles Kemp, Noah Goodman,
Yarden Katz, Kristian Kersting and Tom Griffiths. ]

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, p. 1, 2008.
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SRL without Tears: An ILP Perspective

Kristian Kersting

Fraunhofer IAIS
kristian.kersting@iais.fraunhofer.de

Abstract. Statistical relational learning addresses one of the central
questions of artificial intelligence: the integration of probabilistic reason-
ing with first order logic representations and machine learning. A rich
variety of different formalisms and learning techniques have been devel-
oped. This tutorial provides an gentle introduction to and an overview of
the state-of-the-art in statistical relational learning. It starts from clas-
sical settings for inductive logic programming and shows how they can
be extended with probabilistic methods. It touches upon lifted inference
and recent developments in nonparametric approaches to statistical re-
lational learning. While doing so, it reviews state-of-the-art statistical
relational learning approaches.

[The tutorial is partially based on material prepared earlier jointly with
James Cussens, Luc De Raedt, Brian Milch, Leslie Pack Kaelbling, Josh
Tenebaum, Kurt Driessens, and many more].

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Semantic Web Meets ILP: Unconsumated Love,

or No Love Lost?

Frank van Harmelen

Vrije Universiteit Amsterdam
Frank.van.Harmelen@cs.vu.nl

Abstract. Even at first glance, ILP and the Semantic Web have much
in common. Both are about large volumes of data, both make use of
background knowledge , and both use computationally tractable forms
of logic. Nevertheless, the actual intersection of the two research areas
is very small. In this talk, I will first give a birds eye overview of the
Semantic Web programme (its goals, its methods, its achievements to
date, and the important open challenges). I will then consider the most
obvious use of ILP for the Semantic Web: could ILP be used to learn the
ontologies that are such a crucial ingredient in the Semantic Web story?
However, as with any result from Machine Learning, such ontologies will
not be fully correct and complete. This will require that, from its side,
the Semantic Web community must learn how to deal with such partially
incomplete and incorrect ontologies. I will present the most recent work
in this direction, the efforts to build LarKC, the Large Knowledge, a
platform for infinitely scaleable distributed incomplete Semantic Web
reasoning. Could the Large Knowledge Collider be the place where ILP
and the Semantic Web finally meet?

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Learning Expressive Models of Gene Regulation

Mark Craven

University of Wisconsin
craven@biostat.wisc.edu

Abstract. A central challenge in computational biology is to uncover
the mechanisms and cellular circuits that govern how the expression
of various genes is controlled in response to a cell’s environment. This
challenge presents many interesting opportunities for machine-learning
methods, especially those that employ expressive representations. In this
talk, I will discuss recent research in using machine-learning approaches
to (i) recognize regulatory elements in genomic sequences, (ii) uncover
networks of interactions among genes, and (iii) characterize the cel-
lular responses induced by various stimuli. I will highlight tasks that
call for models that use expressive representations, and discuss lessons
learned about what types of representational attributes are important for
these tasks.

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Information Overload and FP7 Funding

Opportunities in 2009-10

Stefano Bertolo

European Commission
stefano.bertolo@ec.europa.eu

Abstract. Physical tools like the lever and the loom amplify human
strength and dexterity and are often introduced, as in the case of the
agricultural harvester, because a sudden abundance of one quantity of
interest (wheat fields) introduces scarcity in other related quantities (the
human labor needed to harvest them). The rate at which digital infor-
mation is becoming available (both to organisations and individuals) is
creating a similar scarcity in our ability to interpret it to make decisions
that benefit us. In this talk I will describe funding opportunities that the
EU will make available through its Framework Programme 7 to tackle
this scarcity. I will discuss several trends that make the ILP community
ideally placed to contribute to these efforts, together with some general
patterns that have proved very effective in the engineering of successful
proposals in the recent past.

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, p. 5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Model to Study Phase Transition and

Plateaus in Relational Learning

Erick Alphonse and Aomar Osmani

LIPN-CNRS UMR 7030, Université Paris 13, France
erick.alphonse@lipn.univ-paris13.fr,
aomar.osmani@lipn.univ-paris13.fr

Abstract. The feasibility of symbolic learning strongly relies on the effi-
ciency of heuristic search in the hypothesis space. However, recent works
in relational learning claimed that the phase transition phenomenon
which may occur in the subsumption test during search acts as a plateau
for the heuristic search, strongly hindering its efficiency. We further de-
velop this point by proposing a learning problem generator where it is
shown that top-down and bottom-up learning strategies face a plateau
during search before reaching a solution. This property is ensured by
the underlying CSP generator, the RB model, that we use to exhibit a
phase transition of the subsumption test. In this model, the size of the
current hypothesis maintained by the learner is an order parameter of
the phase transition and, as it is also the control parameter of heuristic
search, the learner has to face a plateau during the problem resolution.
One advantage of this model is that small relational learning problems
with interesting properties can be constructed and therefore can serve as
a benchmark model for complete search algorithms used in learning. We
use the generator to study complete informed and non-informed search
algorithms for relational learning and compare their behaviour when fac-
ing a phase transition of the subsumption test. We show that this gen-
erator exhibits the pathological case where informed learners degenerate
into non-informed ones.

1 Introduction

According to [Mit82], symbolic learning is defined as search: given a hypothesis
space defined a priori, identified by its representation language, find a hypothe-
sis consistent with the learning data. This paper, relating symbolic learning to
search in a space state, has enabled machine learning to integrate techniques
from problem solving, operational research and combinatorics. The search is
NP-complete for a large variety of languages of interest (e.g. [Hau89, KV94])
and heuristic search is crucial for efficiency. Whereas heuristic search has been
showed to be effective in attribute-value languages, it appeared early that learn-
ing in relational languages, also known as Inductive Logic Programming (ILP),
had to face important plateau phenomena (see e.g. [Qui91, SP91, RM92]): the
evaluation function, used to prioritise nodes in the refinement graph is constant
in parts of the search space, and the search goes blind. These plateau phenomena
are the pathological case of heuristic search, being complete or not [Pea85].

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 6–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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[SGS01, Alp04, AO08] pointed out that an explanation for these plateaus is
the phase transition behaviour of the NP-complete subsumption test, as shown
by [GBS99, GS00]. When one studies the probability of covering a random ex-
ample of a fixed size by a hypothesis given the hypothesis’ size, one distinguishes
three well-identified regions: a under-constrained region for small hypothesis size,
named “yes”, where the probability of covering an example is close to 1, an over-
constrained region for large hypothesis size, named “no”, where the probability
is close to 0, and finally in between the phase transition or the “pt” region, where
an example may or may not be covered. As the heuristic value of a hypothesis
depends on the number of examples covered (positive or negative), we see that
the two regions “yes” and “no” represent plateaus that need to be crossed during
search without an informative heuristic value.

We think that a systematic study of the impact of plateaus on heuristic search
used in learning is a necessary step for the development of scaling-up relational
learners, much in the line of recent advances in combinatorics through the phase
transition framework.

In this paper, we propose a consistency problem generator in relational learn-
ing, RLPG, that guarantees the existence of plateaus during search, based on
model RB proposed for CSP. Using its properties, it is proved that the current
hypothesis’ size evaluated during learning is an order parameter of the phase
transition of the subsumption test. This result asymptotically guarantees the
existence of a plateau for the heuristic search. Moreover, it is shown that the
size of the plateau grows sub-quadratically with the problem size. In practice,
we will show that problems of very small size can be generated while still guar-
anteeing plateaus, which makes it suitable as a benchmark model for relational
learning. This is empirically validated by running several complete search learn-
ers on problems generated by RLPG that exhibit the pathological case where
informed search learners degenerate into non-informed ones.

In section 2, we present the necessary background on relational learning and
Constraint Satisfaction Problems (CSP). In the next section, we discuss another
model proposed to import the phase transition framework into relational learn-
ing [BGSS03]. However, they tackle the different problem of studying the link
between the localisation of the target concept with respect to the phase transi-
tion and the generalisation performance on a test set. This model cannot be lifted
to our problem as we will discuss it. The section 4 presents the model RLPG
(Relational Learning Problem Generator). Then, this generator is empirically
validated in section 5 on several complete search strategies for learning, avail-
able in the learning systems Aleph [Sri99], Progol [Mug95] and Propal [AR06].
Finally, we conclude on further developments of the model RLPG.

2 Background

2.1 Relational Learning (RL)

In this article, we study what has been termed the ILP-consistency problem
for function-free Horn clauses by [GLS97]. Given a set of positive examples
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E+ and a set of negative examples E− of function-free ground Horn clauses
and an integer k polynomial in |E+ ∪ E−|, does there exist a non-recursive
function-free Horn clause h with no more than k literals such that h logically
implies each element in E+ and h does not implies any element in E−.

In such hypothesis space, the logical implication is equivalent to θ-subsumption
which is NP-complete and therefore decidable [Got87].

Definition 1 (θ-subsumption). Let C, D two clauses. C θ-subsumes D, noted
C ≥θ D iff there exists a substitution θ such that Cθ ⊆ D

The consistency problem is fundamental in learning as it is the core of the
Statistical Learning Theory, notably studied in the PAC framework (see [KV94]
for details). This a fortiori is true in Relational Learning where almost all noise-
resistant learners are relaxation of this problem [Für97].

A central idea in symbolic learning is the use of a generality partial order
between hypotheses, in the hypotheses space denoted Lh, to guide the resolu-
tion of the consistency problem (see Mitchell [Mit82] for more details). Mitchell
defined top-down search and bottom-up search strategies. Without loss of gen-
erality, we restrict ourselves to top-down search. The search strategies are fur-
ther refined into generate-and-test (GT) and data-driven (DD) strategies. In
the GT paradigm, the top-down refinement operator, noted ρ, is only based
on the structure of the hypothesis space, independently of the learning data:
Let h ∈ Lh : ρ(h) = {h′ ∈ Lh|h ≥ h′}. Therefore, generate-and-test al-
gorithms have to deal with many refinements that are not relevant with re-
spect to the discrimination task. On the contrary, the DD strategy searches
the space of hypotheses that are more general than or equal to a given pos-
itive example and uses negative examples to prune irrelevant branches in the
refinement graph. It is defined as a binary operator: Let h ∈ Lh, e− ∈ E− :
ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ �≥ e−}. Relying on the negative exam-
ples allows a TDD strategy to have a branching factor that is smaller than the
branching factor of a generate-and-test strategy, and can therefore compensate
for a poor evaluation function by using the learning data [AR06, AO08]. The
so-called near-misses are negative examples that reduce the branching factor
to one.

2.2 Constraint Satisfaction Problems and Random Problem
Generators

A Constraint Satisfaction Problem (CSP) is defined by a finite set of vari-
ables {X1, . . . , Xn}, a set of finite domains {D1, . . . , Dn}, each variable Xi

taking its value from its corresponding domain Di, and a set of constraints
{C1, C2, C3, . . . , Cm}. Each constraint Ci is defined over a subset of k variables
called its scope and denoted by scope(Ci). An extensional definition of a con-
straint Ci is the set of tuples of values allowed for the variables in scope(Ci).
Instantiating a variable is affecting to it a value from its domain. A solution of
a CSP is an assignment of all variables that satisfies all constraints. When (∀i)
|scope(Ci)| = 2, the CSP is called binary.
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Studies on CSP assume a model of random instance generation [HW94, SD96].
Randomly generated CSP have widely been used experimentally and theoreti-
cally to study the phase transition between the regions of under-constrained and
over-constrained CSP. Most studies use one of the known models A, B, C, D
(see [Smi01] for details). In each of these models, sets of randomly generated CSP
were used. Each set of problems is characterised by four parameters [SD96]: a set
of n variables; the number of values d in each variable domain; p1, the proportion
between the number of generated constraints and the number of possible con-
straints, defining the CSP density, and p2, the proportion between the number of
incompatibles tuples and the possible ones in each constraint, defining the con-
straint’s tightness. p1 and p2 are order parameters to exhibit phase transitions in
CSP. For instance, by fixing one of the order parameters and varying the other
one from 0 to 1, one wanders from an under-constraint region, the “yes” region,
where the probability of solubility is close to 1, to an over-constrained region,
the “no” region, where the probability is close to 0, with the phase transition
localisation depending on the parameters’ value.

We detail the standard stochastic model B [SD96] and its extension model RB
[XL00, XBHL07] we are going to use in the following. Model B is defined by the
tuple B(k, n, d, p1, p2), where k ≥ 2 denotes the arity of each constraint, n ≥ 2
the number of variables, d the domain size for all constraints, p1 constraint
density and p2 constraint tightness. We note that in model B, the number of
constraints is m = p1.(n

k ), the number of disallowed tuples of each constraint is
t = p2.d

k. Some limitations of model B regarding the asymptotic complexity have
been pointed out by [AKK+97]. They prove that random problems generated
with B model suffer from trivial insoluble instances as problem size increases.
Model RB, which share the same generation procedure as model B, avoids its
limitations by adding constraints of the parameters’ values. Model RB is denoted
by RB(k, n, α, r, p), where k, n, p are respectively the same as k, n, p2 in model
B, α defines the domain size d = nα and r defines the number of constraints
m = r.n.ln(n).

To generate a problem in each model, we have to build m constraints, each one
formed by randomly selecting, uniformly and without replacement, a scope of k
(distinct) variables and randomly selecting, uniformly and without replacement,
a relation of t distinct disallowed tuples. [XL00] prove that model RB, under
some conditions, avoids trivial asymptotic behaviours and provides exact phase
transition thresholds for random CSP. Model RB guarantees the phase transition
by varying one of the two defined parameters r and p. Note that the main
difference between B and RB is that the domain size of each variable in RB grows
polynomially with the number of variables. We will use the following theorem
to show that the hypothesis size in relational learning is an order parameter of
the phase transition.

Theorem 1 ([XL00]). Let Psat denotes a probability distribution, if k, α > 1
k

and p ≤ k−1
k be constants and rcr = −α/ln(1− p) then

lim
n→∞Psat[P ∈ RB(k, n, α, r, p) is sat] =

{
1 if r < rcr

0 if r > rcr
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This theorem indicates that a phase transition is guaranteed when the domain
is not too small and the constraint tightness not too large. In the case of binary
constraints (k = 2), the domain size is required to be greater that the squared
root of the number of variables.

2.3 Reduction of Extensional CSP to θ-Subsumption

As θ-subsumption is NP-complete, various models used to study phase transition
phenomena from other NP-complete problems can be imported to relational
learning via reduction. Models for random CSP are easy to import in relational
learning because of their trivial reduction to the subsumption problem (time and
space complexity linear in the problem size), that is to decide if a variabilised
function-free horn clause, C, θ-subsumes a ground function-free horn clause, D.

Following the presentation of CSP in section 2.2, C encodes the scope of the m
constraints with m literals built on different predicate symbols : each constraint
Ci is associated with a literal li such that scope(Ci) = vars(li). By definition, C
cannot have more literals than (n

k ). The extensional definitions of the constraints
is given by D : for each constraint we define as many ground literals as there are
allowed tuples in it, built from its associated predicate symbol. The size of D is
then Σm

i |Ci|, with |Ci| the cardinality of the set of allowed tuples by Ci.
We illustrate the reduction on an example. Let be a CSP defined over 3 vari-

ables with D1 = D2 = {a, b} and D3 = {a, b, c}, and 2 constraints C1(X1, X2) =
{(a, b)} and C2(X1, X2, X3) = {(a, b, c), (b, a, a)}. We define C as:
c← c1(X1, X2), c2(X1, X2, X3) and D as c← c1(a, b), c2(a, b, c), c2(b, a, a). Note
that the positive literal is only relevant for the learning task as it doesn’t encode
anything CSP specific. It is easy to see that a substitution θ, solution to the
subsumption problem, is the solution tuple of the CSP and conversely. In the
example θ = {X1/a, X2/b, X3/c}.

3 Related Work

A model to study the phase transition of the subsumption test has been proposed
in [GS00] and the study of its possible impact on relational learning efficiency
has been proposed in [GBS99, BGSS03]. We are going to discuss them and show
their limitations to study the impact of the phase transition of the subsumption
test on plateaus during search.

3.1 Model to Study the Phase Transition of the Subsumption Test

In [GS00], they propose a model, inspired by model B, to study the phase tran-
sition of the subsumption test. Hypotheses are function-free horn clauses from
the hypothesis space Lm

h built as follow:

Lm
h = {c←

n−1∧
k=1

plk(Xk, Xk+1) ∧
m∧

k=n

plk(Xik
, Xjk

)}
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where c is the clause head without variables, ik < jk ∈ {1, . . . , n}, lk ∈ {1, . . . , m}
and such that all literals in the clause body are built on distinct binary predicate
symbols. The first n−1 literals ensure that all variables are linked, and therefore,
that the set of variables cannot be decomposed into sets of independent variables
that can break the subsumption test into easier sub-problems [GS00]. That is
to say, p1, the constraint density, can not be fewer than p1min = 2/n. Examples
are represented as ground clauses as described earlier to encode the constraints’
domains. They showed that m, the hypothesis size, and L, the domain size, were
order parameters of the phase transition in their settings. However, there is no
guarantee that a phase transition will occur as their model differs from random
CSP models. p1 and p2, the order parameters in most CSP models, are random
variables here, depending on m and L. Indeed, the variables pairs are randomly
drawn with replacement and several literals can be built on the same pair of
variables. The constraint on the variables is no longer a set of tuples built on a
unique predicate symbol, but the intersection of all sets of tuples related to the
literals. For instance, let n = 4, then the maximal number of constraints in a
binary CSP is mmax = 6. Let m = mmax and the two following hypotheses:

h1 : c← p1(X, Y ), p2(Y, Z), p3(Z, T ), p4(X, Y ), p5(X, Y ), p6(X, Y )

h2 : c← p1(X, Y ), p2(Y, Z), p3(Z, T ), p4(X, Z), p5(X, T ), p6(Y, T )

We remark that in h1, the order parameter p1 = p1min and p2 is undefined, and
in h2, the order parameter p1 = 1 and p2 = 1−N/L2.
To exhibit the phase transition of subsumption, we propose to use model RB,
where phase transition is proved to occur asymptotically and can be precisely
located.

3.2 Phase Transition of Subsumption and Relational Learning

Bringing the phase transition framework to the realm of Relational Learning
has been first done by Giordana et al. [GBS99, BGSS03] where they proposed
to study the link between the localisation of the target concept with respect to
the phase transition of the subsumption test and the generalisation performance
on a test set. They tackle the learning of a function-free horn clause from the
hypothesis space Lm

h described above. A learning problem is parametrised with
the pair (m, L), the number of variables n being fixed to 4 and the number of
allowed tuples N is fixed to 100 in their experiments. In a (m, L) problem, m
is the size of the target concept drawn from Lm

h and L the number of constants
in the examples. For each problem, a learning set and a test set are built to
evaluate generalisation performance of learning algorithms. Both are balanced
sets of examples with 100 positive examples and 100 negative examples. It has
to be noted that if (m, L) lies in the “yes” (resp. “no”) region, by construction
the concept description will almost surely cover (resp. reject) any randomly
constructed example. For those problems, the example generator is modified
and relies on a repair mechanism to ensure a balanced distribution of positive
and negative examples [BGSS03].
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It was shown in [AO08], however, that this localisation of the concept was
not a reliable indication of the learning problem difficulty, and that plateaus
generated by the phase transition behaviour of the subsumption test prevented
FOIL from solving any problem.

Their model cannot be lifted to our study of the link between plateaus and
heuristic search efficiency. Notably, we can note that the hypothesis space is
very large in their settings and prohibits the study of average heuristic search
behaviour of complete learners and even incomplete learners. There is also no
guarantee that plateaus, through the occurrence of a phase transition, will occur
with smaller parameter values, as their model differs from random CSP models
as stated above, but also as a balanced distribution of the examples is ensured
by a repair mechanism and is no longer random.
Also, the proposed problem generator does not translate into lattice-like hypoth-
esis space (the target concept being one of the most specific elements) and the
link between variables is a hidden structure. This point is important to be able
to easily run standard learning approaches on generated problems. For instance,
this prevents the use of popular approaches based on the existence of a bottom-
most element in the search space, like top-down seed-based approaches (Aleph,
Progol, Propal) and bottom-up approaches, like lgg-based approaches [Plo70].

We introduce in the next section a model to analyse phase transition and
plateau phenomena in relational learning. It guarantees plateaus during search
in problems of very small size, suitable to evaluate the average performance
of learners, and defines the hypothesis space as a boolean lattice to ease the
implementation of various learning strategies.

4 Model for Exhibiting Plateaus in Random RL Problems

A learning problem instance in our model is denoted RLPG(k, n, α, N, Pos, Neg).
The parameters k, n, α are the same parameters as in RB. N is defined as in
[GBS99] as the number of allowed tuples by each constraint and we have N =
(1− p).dk, with p the constraint tightness. As they argued, this is more meaning-
ful for learning as it is the number of literals built on the predicate symbol associ-
ated to a given constraint. Pos and Neg are the number of positive and negative
examples in the learning dataset, respectively.

Given k and n, the maximum number of constraints is (n
k ). All these con-

straints are encoded in a clause which is set as the bottom clause of the hypoth-
esis space Lh. Lh is then defined as the power set of the bottom clause, which is
isomorphic to a boolean lattice. As said previously, this property is interesting
for learning because it eases the implementation of various learning strategies
like bottom-up generate-and-test and data-driven (i.e. lgg based [Plo70]) strate-
gies. Also, this restriction is often used in top-down learning systems like Aleph,
Progol or Propal to define complete and efficient refinement operators. In that
space, it is guaranteed that each hypothesis evaluated by the learning algorithms
encodes a valid constraint network of the underlying model RB. The refinement
operator is to add a literal from the bottom clause that is not in the hypothesis,



A Model to Study Phase Transition and Plateaus in Relational Learning 13

hence the number of literals in the hypothesis is exactly m, the number of con-
straints in the underlying CSP.

Learning examples are randomly drawn, independently and identically dis-
tributed, given n, α and N , as explained in section 2.2. Their size is N.(n

k ).
Each example defines the set of allowed tuples of size N for possible constraint
networks ranging from 0 to (n

k ) constraints.
In the next section, we detail how this model exhibits a phase transition of

the subsumption test when varying hypothesis sizes, and in section 4.2 how
this phase transition translates into a plateau for the heuristic search, during
the resolution of the consistency problem. From now on, we restrict ourselves
to binary CSP, that is all logical predicates are binary. As in [BGSS03], this
restriction is for the sake of simplicity while still being representative of typical
relational learning problems.

4.1 The Phase Transition of the Subsumption Problem

Given a randomly drawn example according to model RLPG, a hypothesis of
size m defines m constraints over n variables, each constraint being extensionally
defined in the example. As the hypothesis size m varies during search from 1
to n(n − 1)/2 (k = 2 here), r = m/(nln(n)), the order parameter of the phase
transition, varies (or equivalently in model B, p1 varies from 0 to 1). In model
RB, there exists an exact localisation of the phase transition for r = rcr. As we
use the same model, varying m, the hypothesis size of the current hypothesis
asymptotically exhibits a phase transition.

[XL00] give an asymptotic value of the cross-over point of the phase transition
as rcr = −α/ln(1 − p) (theorem 1). This critical value is the point where the
expected number of solutions of the problem E(N) = 1. In practice, this is often
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used to localise the critical value of the order parameter where Psat = 0.5 (see
e.g. [SD96]). In our case, the critical hypothesis size is mcr = −αnln(n)

ln(1−p) . We can
see that as n increases, the value of mcr grows in nln(n). Interestingly, even when
n is small (starting from 5), experiments corroborate the theoretical results as
shown in figure 1. Note that for each plot, the maximum number of possible
literals is n(n− 1)/2.

Empirical validation of the localisation of the crossover point regarding to the
order parameter m is summarised in table 1. We observe that for all values of
n, greater than 5, the empirical value of the crossover point mcr is close to the
theoretical asymptotic value. Even when the conditions of theorem 1 are not
respected (p = 0.75 in Figure 1), we observe that Psat = 1 almost surely for
m < mcr. It was noted already in [Smi01] that the conditions attached to α and
p are strong and it should be possible to relax them by using other methods to
compute Psat lower bounds. This robustness allows us to define small problems
where the phase transition is exhibited, which translates into small hypothesis
spaces as we will see in the next section.

Table 1. Comparison between empirical and theoretical values of m for α = 1, p = .75

n mTP empirical value of m

5 5,79 ± 1 between 5 and 6
10 16,61 ± 1 between 14 and 15
15 29,30 ± 1 between 26 and 27
20 43,21 ± 1 between 39 and 40

We show the phase transition along the second order parameter p of model RB
in figure 2, with α = 1.4 where the contour plots correspond to Psat = 0.99, 0.5
and 0.01, and in figure 3, where the contour plot corresponds to Psat = 0.5, with
different values of α. Each point is averaged over 1000 subsumption tests. p is
controlled with N in RLPG and we observe that as N increases, p decreases
which gives smaller values for mcr.

p can also be controlled by varying α, keeping N constant, as in [GS00] who
used the domain size as order parameter, which is pictured in figure 4. We are
going to use this control parameter in the next section to change the localisation
of the “pt” region and therefore to change the plateau length of a problem in the
next section. Although this is not strictly model RB, the advantage of d = nα

here to control p instead of N is that the examples’ size does not change and it
keeps learning problem size constant. However, p changes faster, quadratically
in d instead of linearly in N , as it can be seen in the figure.

4.2 The Plateaus of Heuristic Search

A relational learning problem is defined by drawing, independently and identi-
cally distributed, Pos positive examples and Neg negative examples. By con-
struction, a hypothesis, solution of the consistency problem, can only be found
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various values of α

in the phase transition region, as hypotheses in the “yes” (resp. the “no”) will
almost surely subsume (resp. not subsume) all learning examples. The top-down
search, which starts from the top-most hypothesis in the hypothesis space lat-
tice, will have to specialise hypotheses by adding a literal at a time to cross the
“yes” region before reaching the phase transition region where a solution can be
expected. Dually, a bottom-up search will have to cross the “no” region before
reaching the “pt” region.

The “yes” and “no” regions implies a plateau to cross during a heuristic
search in these regions. Indeed, if we study the state of the art on evaluation
functions used in learning (see for instance [FF03]), it shows that all of them
are based, without loss of generality, on three parameters that are the coverage
rate of positive examples, the coverage rate of negative examples and possibly
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Fig. 4. Contour plot corresponding to Psat = 0.5 in the (m, d) plane for n = 5 and
various values of N

Fig. 5. Contour plot corresponding to plateaus size: Psat ≥ 0.99 in the (m, d) plane
for n=5 and various values of N

a complexity measure of the hypothesis under consideration. In the “yes” or
“no” regions, the coverage rate of positive and negative examples is constant
and implies that all evaluation functions are constant, defining a plateau. It has
to be noted that, as the first two parameters are inherited from the learning task
definition, it is unlikely that a solution for solving the plateau problem consists
in designing new evaluations functions.

We show the plateaus for a top-down approach in figure 5. It shows the contour
plot corresponding to Psat = 0.991 for problems defined with n = 5 variables and
different values of N . Psat is evaluated on average at each point in the (m, d) plan

1 Any value arbitrarily closer to 1.0 gives the same result.



A Model to Study Phase Transition and Plateaus in Relational Learning 17

by running 1000 subsumption tests. These contour plots indicate the beginning
of the “pt” region to the right, the left part, for low m, being the plateau in the
“yes” region. We see that varying d the number of constants in the example, we
change the tightness of the constraints which varies the plateau length.

Various experiments have been conducted with different parameter values
which show all similar plateau profiles. It is interesting to note that the smallest
value for n where plateaus were exhibited is n = 5. In this case, the bottom-
most hypothesis in the lattice has a size of n(n − 1)/2 = 10, and therefore
the plateaus are exhibited for a hypothesis space of 210 hypotheses only. This
is a very small problem size which makes it very useful for studying average
performances of complete search learners in reasonable time. We are going to use
it in the next section to compare the behaviours of different complete informed
and non-informed search learners.

5 Experimental Results

Complete search learners, available in the learning systems Aleph, Progol and
Propal are runon a collection of problemsdenotedbyRLPG(2, 5, d, 15, Pos, Neg),
with d varying from 5 to 20, and Pos = Neg varying from 1 to 5. We evaluate the
impact of the plateaus on their heuristic search cost by recording the number of
evaluated hypotheses to answer the consistency problem. Every plot is averaged
over 1000 randomly drawn learning problems. As said previously, we limit our-
selves to top-down approaches. For a detailed description of the various strategies
we discuss below, we refer to [Pea85, Sri99, Mug95, AR06] because of the space
requirements of the paper.

As non-informed searches, we use the breadth-first TGT search (BF-TGT)
and the depth-first TGT search (DF-TGT). As informed searches, we use the A
TGT search (A-TGT) and the best-first TGT search (BESTF-TGT). Informed
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Fig. 7. Median number of evaluated hypotheses during search according to their size,
with d = 8

search makes use of an evaluation function to minimise, whose general form is
f = g + h. g is defined as the cost from the start to the current hypothesis
and h as an estimation of the distance from the current hypothesis to the goal.
We define A-TGT according to the Progol system: g is defined as the length of
the current hypothesis and h has the difference between the number of negative
examples and the number of positive examples. In our context, as all positive
examples must be subsumed, it simplifies to the number of negative examples.
BESTF-TGT is not biased towards shorter hypotheses and defines g = 0.

In all these complete strategies, the implemented refinement operator struc-
tures the hypothesis space as a tree in order to avoid redundancy during search.
This is done classically with boolean lattices by fixing a total order on the pos-
sible refinements.

The last learning strategy we study is the one used in the TDD learner Propal.
This is an incomplete learner as it performs a beam search guided by the Laplace
function. So we set Propal with a beam of unlimited size, which basically turns
down to a non-informed breadth-first search (BF-TDD). The only difference is
that when the solution is reached at a level of the search, it will be the first
picked up at the next level. Note also that, as an incomplete learner, it does not
have an optimal refinement operator, like the other learners, and may evaluate
the same hypothesis several times.

We only show results obtained when Pos = Neg = 1, 3 and 5, as extensive
experiments varying the number of examples exhibited the same patterns. Figure
6 shows the median cost of the different learning strategies for Pos = Neg = 3
with various plateau lengths defined by d (as illustrated in figure 5). We can
notice several patterns for the learners depending on the plateau lengths.

We first compare BF-TGT and BF-TDD. BF-TDD outperforms its generate-
and-test counter-part, as it has been shown in [AR06] that the TDD approach
necessarily has a branching factor smaller or equal to that of a TGT strategy.
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When d = 5, the plateau is the largest and no consistent hypothesis exists.
BF-TGT has to evaluate all the hypotheses (1024) before answering the prob-
lem. As d increases, the plateau length decreases and BF-TGT will develop all
hypotheses up to the phase transition region where a hypothesis can be found.
As for BF-TDD, the computation of a near-miss with the bottom of the search
space in the case of d = 5 yields an inconsistency as the near-miss is equal to the
bottom-most hypothesis and the search halts with no evaluated hypotheses. As
d increases, near-misses will be farther from the bottom of the search space and
the branching factor will increase. This is pictured by an increasing number of
evaluated hypotheses, which converge towards the cost of BF-TGT. The other
non-informed learner, DF-TGT, shows the same behaviour as BF-TGT for low
values of d as it cannot detect trivial inconsistency. When d is above 13, it per-
forms best as there are several solutions in the “pt” region. DF-TGT directly
crosses the plateau and ends up doing few backtracks before finding a consistent
hypothesis.

We discuss now the informed strategies. We can see that they both have a
similar behaviour, and mimic BF-TGT, although they evaluate fewer hypothe-
ses than it for smaller plateaus. However, they systematically evaluate more
hypotheses than DF-TGT, and than BF-TDD, except for the largest values of
d. This behaviour is the pathological case of an informed search. As an illus-
tration, we plot the number of hypotheses evaluated according to their size, for
d = 8 in figure 7, where the plateau is large, and for d = 15 in figure 8, where the
plateau is smaller. We can see that they all develop all hypotheses up to m = 5
for d = 8, given a plateau size of 4 in figure 5, and up to m = 3 for d = 15, given
a plateau size of 2. It is only in the ”pt” region that the heuristic becomes useful
to guide the search and differentiates the different approaches. The fact that each
time m is one literal bigger than the plateau size is not clear. We can note that
BESTF-TGT systematically outperforms A-TGT, even slightly, as A-TGT will

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1  2  3  4  5  6  7  8  9  10

C
os

t i
n 

nu
m

be
r 

of
 e

va
lu

at
ed

 h
yp

ot
he

se
s

m

A-tgt
bestf-tgt

bf-tgt
df-tgt

Fig. 8. Median number of evaluated hypotheses during search according to their size,
with d = 15



20 E. Alphonse and A. Osmani

 0

 200

 400

 600

 800

 1000

 1200

 5  10  15  20

C
os

t i
n 

nu
m

be
r 

of
 e

va
lu

at
ed

 h
yp

ot
he

se
s

d

A-tgt
bestf-tgt

bf-tgt
df-tgt

bf-tdd

Fig. 9. Median number of evaluated hypotheses during search for learning problems
with Pos = Neg = 1 and d varying from 5 to 20

give preference to a hypothesis that subsumes 2 negative examples compared to
a hypothesis one literal longer that subsumes only 1 negative example.

We can note that the cost of resolution, after decreasing up to d = 15 for
the GT learners, starts increasing after this point. The problems seem harder
for BF-TDD too. This point corresponds to problems that have a probability of
solubility close to 0.5 and would correspond to the phase transition region of the
consistency problem. As noted in [AO08], learners solving the ILP-consistency
problem potentially have to face two phase transitions: the phase transition of
the NP-complete subsumption test and the phase transition of NP-complete
search. It is a very interesting follow-up to study how the parameters of RLPG
can exhibit this second phase transition as the probability of solubility of the
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consistency problem may impact the behaviour of learning strategies. Figure 9
shows problems generated with Pos = Neg = 1, where the number of solutions
is high. In this case, we observe the same behaviour of algorithms as in figure 6,
with a notable difference for DF-TGT which quickly reaches the “pt” region and
finds a solution with almost no backtrack.

Figure 10 shows the median cost of the different learning strategies in problems
with Pos = Neg = 5 where almost no solution exists and all learners have to
search the entire space. We observe that all informed and non-informed TGT
approaches have the same high median cost as they cannot efficiently detect
inconsistency as opposed to the TDD approach for all values of d.

6 Conclusion

Recent works in relational learning pointed out that the phase transition phe-
nomenon, which may occur in the subsumption test during search, acts as a
plateau for the heuristic search, strongly hindering its efficiency [AO08]. We
proposed to systematically investigate this issue by designing a relational learn-
ing problem generator where it is shown that top-down and bottom-up learning
strategies face a plateau during search before reaching a solution. This property
is ensured by using the generative model RB defined for CSP to exhibit the
phase transition of the subsumption test, with the hypothesis size as an order
parameter. The size of the plateau grows sub-quadratically with the problem
size and it is guaranteed asymptotically. Intensive experiments show that even
for small problems the asymptotic model of RLPG still holds. This feature al-
lows to study a wide range of algorithms in reasonable time and is therefore
suitable as a benchmark model. At the end of the paper, we have presented pre-
liminary results with various complete learners and interesting behaviours have
been pointed out. Notably, it has been shown, as a validation, that RLPG exhib-
ited the pathological case where informed search degenerates into non-informed
one when facing plateaus.

Finally, this model points out interesting follow-ups. We plan to further study
the properties of generated problems depending on RLPG’s parameters; im-
plement and compare other learning strategies, notably bottom-up, to exhibit
characteristic behaviours to help design better heuristic approaches for relation
learning.
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via Orabona, 4 - 70126 Bari - Italy

{appice,ceci,malerba}@di.uniba.it

Abstract. (Multi-)relational regression consists of predicting continu-
ous response of target objects called reference objects by taking into
account interactions with other objects called task-relevant objects. In re-
lational databases, reference objects and task-relevant objects are stored
in distinct data relations. Interactions between objects are expressed
by means of (many-to-one) foreign key constraints which may allow
linking explanatory variables of a task-relevant object in several
alternative ways to the response variable. By materializing multiple as-
signments in distinct attribute-value vectors, a reference object is repre-
sented as a bag of multiple instances, although there is only one response
value for the entire bag. This works points out the same assumption of
multi-instance learning that is a primary instance is responsible for the
observed response value of a reference object. We propose a top-down
induction multi-relational model tree system which navigates foreign key
constraints according to a divide-and-conquer strategy, derives a repre-
sentation of reference objects as bags of attribute-value vectors and then,
for each bag, constructs a primary instance as main responsible of the
response value. Coefficients of local hyperplane are estimated in an EM
implementation of the stepwise least square regression. Experiments con-
firm the improved accuracy of our proposal with respect to traditional
attribute-value and relational model tree learners.

1 Introduction

Regression has received significant attention in supervised learning, where train-
ing data consist of observations of an unknown continuous function f , and the
learning task is to learn a general model g that is close to f on training data
and can be subsequently used to reliably predict on new unlabeled observations.
Although regression task is most popular with attribute-value learning, several
extensions have already been investigated in multi-relational data mining [11],
where data is expected to be spread in several database relations.

Handling relational data adds significant difficulties to the regression task
since data stored in distinct database relations describe objects of different type.
These objects play different roles, and it is necessary to distinguish between the
reference (or target) objects, which are the main subject of analysis, and the task-
relevant objects (or non-target objects), which are related to the former and can
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contribute to account for the variation. The response variable of a regression
model is a continuous property of the reference objects, while the explanatory
variables of the model can be associated to both reference and task-relevant ob-
jects. Foreign key constraints model “many-to-one” relationships according to
which several task-relevant objects may be associated to the same reference ob-
ject (non-determinacy) [15]. Since explanatory variables of task-relevant objects,
namely non-determinate variables, can be linked to the response variable in sev-
eral alternative ways, it is necessary to establish how the response value should be
estimated due to the multiple instances that are possible for one reference object
when taking into account the task-relevant objects. Deriving multi-instance data
for a reference object boils down multi-relational regression to a generalization
of the multi-instance learning.

Multi-instance learning was firstly defined in [6] to deal with predictive tasks
where training data consist of bags of several instances and the response value
is assigned to the entire bag. In the original proposal, all instances, which are
represented by attribute-value vectors, are used for training. However, in many
cases not all instances are responsible for the observed value, thus aggravating
problems due to noisy and irrelevant observations. To overcome these limita-
tions, several regression methods developed in multi-instance settings base their
prediction on only one (or few) instance(s) of the bag. The validity of these
methods has been empirically proved in several applications ranging from drug
design [6] to invitro fertilization [19] and image analysis [16].

In this work, we follow the same approach to solve the multi-instance learning
problem generated from multi-relational data, and we base the prediction on the
primary instance (or prototype) selected for each reference object. In particu-
lar, we propose a novel multi-relational learner, called MIRT (Multi Instance
Relation model T ree Induction), which follows a multi-instance approach to
learning regression models from multi-relational data. MIRT works under the
common hypothesis that the underlying function f is a linear model with Gaus-
sian noise on the value of the response variable. To avoid the a priori definition
of a global form for the regression function [13], the function f is approximated
by means of a tree-structured regression model, called model tree. This is built
by recursively partitioning the set of reference objects according to a computa-
tionally efficient divide-and-conquer search strategy. An internal node can either
perform a binary test on some explanatory variable or instantiate a new relation
on the basis of some foreign key constraint, while a leaf is tagged with a multiple
linear function (or hyperplane) g built over a multi-instance representation of
the reference objects at the leaf.

Our proposal permits to compute simultaneously both primary instances and
regression coefficients together by means of Expectation Maximization (EM)
algorithm which minimizes the least square error of a multiple linear function
learned in a stepwise fashion [8]. In this way, the final relational model tree
reveals local linear dependences between response variable and explanatory ones
without suffering of the presence of noise and outliers. The tree can then be
used to predict the unknown response of any new reference object (test), whose



26 A. Appice, M. Ceci, and D. Malerba

primary instance is constructed by choosing the binding of the non-determinate
variables involved in the local g that minimizes the Euclidean distance from the
training primary instances stored in the leaf.

The paper is organized as follows. In the next Section, we discuss background
and motivations of this work. The learning problem is formally defined in Section
3. In Section 4, we present a novel method that enriches the top-down induction
of a relational model tree with an EM iterative approach to compute primary
instances and regression coefficients. Lastly, experimental results are reported in
Section 5 and some conclusions are drawn.

2 Background and Motivation

Related research on regression in multi-relational data mining and multi-instance
learning are reported below.

2.1 Background in Multi-relational Data Mining

Multi-relational data mining methods for regression can be classified into two
alternatives: propositional and structural (or relational).

The propositional approach constructs features which capture relational prop-
erties of data and transforms original relational data into a single attribute-value
representation. The non-determinacy issue is dealt with by deriving boolean fea-
tures (e.g. there exists at least a molecule conformation that includes an atom
with charge greater than 2.5) or aggregate features (the average charge of atoms
involved in the conformations of the same molecule). The resulting representa-
tion can then be input to a wide range of robust and well-known conventional
regression methods which operate on an attribute-value single instance repre-
sentation [12].

The structural approach provides functionalities to navigate relational struc-
tures in its original format and to generate potentially new forms of evidence
not readily available in a flattened single table representation. The whole hy-
pothesis space is directly explored by the mining method. Structural regression
methods [14,2,1,22,9] are generally obtained by upgrading propositional learn-
ers, e.g. regression trees and model trees, to the multi-relational setting. Al-
though several of these methods assume that the function underlying data is
a (local) hyperplane, only few of them [1,22] allow regression functions which
include non-determinate explanatory variables. These methods use the several
instances of a reference object in training and employ aggregate functions af-
ter or before learning coefficients of local hyperplanes. In [1], multiple instances
are dealt as separate instances and coefficients of hyperplane are computed by
solving least square regression in the derived single instance learning. Multiple
predictions derived for the same reference object are aggregated by resorting to
the average function. In [22], user-defined aggregate functions allow to aggre-
gate a non-determinate variable before adding the variable to the linear model,
thus avoiding the problem of multiple predictions. Anyway the use of aggregates
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may suffer from problems of information loss and statistical significance when
in presence of noise or outliers.

2.2 Background in Multi-instance Learning

Although multi-instance learning was initially defined for classification [6], some
regression methods have been developed for the multi-instance setting.

A seminal work is in [18], where Ray and Page have assumed that the function
f underlying multi-instance data is a linear model and there is one instance for
each bag that is the main responsible of the real-valued response value. They have
proposed an EM-based iterative method to determine primary instances and
regression coefficients of the hyperplane that minimizes the least square error.
Regression coefficient are computed for all explanatory variables. The hyperplane
can then be used to predict the unknown response of a new object represented by
a bag of multiple instances. The problem of determining the test primary instance
is naively solved by selecting the first instance stored in the bag. Zhang and
GoldmanIn [23] have combined the EM algorithm with a diverse density based
algorithm. A two-step gradient ascent search of the standard diverse density
algorithm is used to select the primary instances which maximize diverse density
value. Dooly et al. [7] have proposed a multiple-instance variant of unweighted
k-NN in which the distance between bags is defined as the minimum Euclidean
distance between points in the two bags. The regression method investigated in
[5] bypasses the problem of choosing a primary instance by computing a nonlinear
weighted average of all response values. However, this is justified by the specific
task of predicting the molecule activity. A gradient-based optimization procedure
is used to determine the best linear model.

The multi-instance approach to relational regression task has also been con-
sidered in multi-relational data mining. Srinivasan and Camacho [20] have firstly
recognized the multi-instance nature of a relational regression task when learn-
ing relational clauses. However no solution was proposed for the issue of binding
those non-determinate variables which are the responsible for a response value.
Several bindings are either treated as data points for regression analysis or are
grouped in a single aggregated value. An important contribution to interpret-
ing multi-relational data mining problems as multi-instance learning problems
comes from Blockeel et al. [3], who have upgraded decision tree learning to the
multi-instance framework in ILP.

3 Problem Statement: Relational vs. Multi-instance

The relational regression task can be formally defined as follows:

Given:

1. a set S of reference objects, that is, the target objects of the analysis;
2. some sets Ri of task-relevant objects;
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3. a set I of interactions between reference objects and/or task-relevant objects;
4. a response value y ∈ R which tags each reference object in S and assumes

value according to an unknown function f : 〈S,
⋃

Ri, I〉 → R.

Find a function g that is hopefully close to f on the domain 〈S,
⋃

Ri, I〉.

The set S is stored in one data relation (namely target table) of a relational
database D, i.e. one tuple for each reference object. Similarly, each set Ri is
stored in a distinct data relation of D (one table for each object type). The
interactions I are expressed by the foreign key constraints (FK) which state
how tuples in one data relation relate to tuples in another relation. Foreign key
constraints FK allow navigating D and retrieving all the task-relevant objects
which are related to a reference object and thus potentially relevant to predict
the value of Y . The definition of the task-relevant objects which are related to
a reference object according to a foreign key path is formally provided in the
following.

Definition 1. A task-relevant object tro ∈ Ri is related to a reference object
ro ∈ S if and only if:

1. there exists a foreign key constraint fk ∈ FK from Ri to S (or vice-versa)
such that the foreign key of tro assumes the same value of the primary key
of ro (or vice-versa), or

2. there exists a task-relevant object newTro ∈ Rj such that newTro is related
to ro and there exists a foreign key constraint fk from Rj to Ri (or vice-
versa) such that the foreign key of newTro assumes the same value of the
primary key of tro (or vice-versa).

The sequence of foreign key constraints fkp = 〈fk1, . . . , fkn〉 according to a
task-relevant object is related to a reference object is called foreign key path.

A foreign key path provides the schema of the attribute-value vectors which can
be constructed by performing the natural join between data relations involved in
the foreign key path and projecting over the explanatory variables. Grouping the
attribute-value vectors referring to the same reference object allows to represent
a reference object as a bag of multiple attribute-value vectors. In this case, the
difference with the original formulation of a multi-instance task is that a rela-
tional bag may include attribute-value vectors with different attribute schema
(one schema for each foreign key path). Independently from this difference, the
multi-instance form of relational data poses the same difficulties due to noise
and presence of irrelevant instances as traditional multi-instance data. This mo-
tivates our focus on the problem of selecting the main responsible of the response
values. This attempt corresponds to reformulate the relational regression goal as
follows:

Find (i) the primary instance of each reference object by choosing the best
binding for non-determinate variables of possibly related task-relevant object, and
(ii) a regression function g that is hopefully close to f on the retrieved primary
instances.
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4 Multi-instance Induction of Relational Model Trees

MIRT induces a multi-relational model tree by recursively partitioning the ref-
erence objects stored in the target table of a relational database and associating
different hyperplanes to the separate partitions. Partitioning takes into account
the relational arrangement of task-relevant objects stored in the same relational
database. Each hyperplane is a linear combination of a subset of the explana-
tory variables belonging to several data relations in the splitting tests along the
unique tree path connecting the root to the leaf.

The approach adopted to estimate the regression coefficients is where MIRT
differs from the state-of-art relational model tree learners. MIRT neither resorts
to aggregate nor considers multiple binding values as separate instances, but it
minimizes the least square error over the primary instances constructed from
the training attribute-value vectors falling in the leaf. Under the restriction that
only the attribute-value vectors which satisfy the intensional description of the
partition at hand are constructed, the primary instances are obtained in an EM-
based formulation of the stepwise regression that i) chooses at each step the best
explanatory variable to be introduced in the hyperplane, ii) identifies the best
binding for this variable among the possible ones in the bag iii) uses these best
bindings to compute an estimate of the regression coefficient of this variable in
the hyperplane. The primary instances constructed in the training are stored in
each leaf in order to provide a baseline to construct the primary instance of an
unknown reference object and then to predict its unknown response value.

Details of the relational tree induction, the EM based implementation of multi-
instance stepwise regression and the prediction of unknown reference objects are
reported in the next sub Sections.

4.1 Relational Tree Induction

The construction of the tree proceeds top-down. It starts with a root node t0
with is associated with the entire set of training reference objects and recursively
proceeds by choosing from either:

– growing the tree by performing a splitting test on the current node t and
introducing the nodes tL (left child of t) and tR (right child of t) or

– stopping the tree’s growth at the current node t and then associating an
hyperplane at t.

At each node, the splitting test is chosen by minimizing the average standard
deviation of response value [4]. Coherently with the semantics of a relational
tree defined in [2], a variable that is introduced in the splitting test (i.e. this
variable does not occur in the higher splitting tests of the tree) must not occur
in the negation of the splitting test. This restriction is required to guarantee the
mutually exclusivity when partitioning reference objects according to the test
conditions which may involve several data relations.

A splitting test may either be a foreign key test or an attribute test. A foreign
key test is a binary test to partition reference objects according to the existence of
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a non empty relationship between data relations involved in one or more foreign
key constraints. This corresponds to perform natural joins between relations
involved in the foreign key path associated to the unique tree path connecting
the root to the node and relations introduced with the foreign key test. Due
to the complexity of computing natural joins, MIRT imposes that a foreign key
between two data relations can be introduced at most once in this unique path.
The foreign key constraints are selected from the relational database under the
restriction that the resulting foreign key path must satisfy the linkedness. This
corresponds to consider only foreign key constraints, where either the foreign
key or the primary key belong to one data relation already involved in a test
along the corresponding tree path from the root to the node.

Example 1. An example of splitting test which employs a foreign key condition
(from atom to molecule) to partition the entire set of molecules:

molecule(I, L, M)
| − −(yes)[molecule(I, L, M),atom(A,M,C) ]
| | − − ...
| − −(no) [molecule(I,L,M), not(molecule(I,L,M),atom(A,M,C))] ...

An attribute test is a test involving a boolean condition on an attribute X . X is
neither a primary key nor a foreign key and X belongs to one of the data relations
added to the tree by means of a foreign key condition. if X is continuous, the
binary test is in the form X ≤ α with α one of the points found on range of X
in partition at hand, while if X is a discrete variable, the binary test is in the
form X ∈ {α1, . . . , αs}, where {α1, . . . , αs} ⊂ SX and SX is the set of distinct
values of X in the partition in hand. MIRT starts with an empty set LeftX = �
and a full set RightX = SX . It moves one element from RightX to LeftX , such
that the move results in a better split.

Example 2. An example of splitting test which employs an attribute condition
(Charge) to partition the set of molecules which have at least one atom related
according to the foreign key constraint from atom to molecule:

molecule(I, L, M)
| − −(yes)[molecule(I, L, M),atom(A,M,C) ]
| | − − (yes)[molecule(I,L,M),atom(A,M,C), C≤2.3]
| | − − ...
| | − − (no)[molecule(I,L,M),atom(A,M,C),not(

molecule(I,L,M),atom(A,M,C), C≤2.3) ]
| | − − ...
| − −(no) [molecule(I,L,M), not(molecule(I,L, M),atom(A,M,C))] ...

In addition to foreign key test and attribute test, MIRT can perform a test which
combines one or more foreign key conditions with one attribute condition.

Example 3. An example of a splitting test which employs simultaneously a for-
eign key condition (from atom to molecule) and an attribute condition (Charge)
to partition the entire set of molecules.



Top-Down Induction of Relational Model Trees in Multi-instance Learning 31

molecule(I, L, M)
| − −(yes)[molecule(I,L,M),atom(A,M,C), C≤2.3]
| | − − ...
| − −(no) [molecule(I,L,M),not(molecule(I,L,M),atom(A,M,C),C≤2.3)]
| | − − ...

The tree construction is stopped when either the number of reference objects in
a node is less than a minimum value or the coefficient of determination is greater
than a threshold. The coefficient of determination estimates the strength of the
relationship between the average response values on partition at hand and the
average response values on the entire training set.

4.2 Multi-instance Stepwise Regression

A local hyperplane y = bx at a leaf node is learned to be close to f on the primary
instances constructed for the training reference objects falling in the partition at
hand. Primary instances are constructed by fixing one binding among the pos-
sible several ones of the (non-determinate) variables involved in the hyperplane
and b is determined by minimizing the least square error (L) on the primary
instances. The hyperplane construction starts from representing each training
reference object i falling in the partition at hand as a bag Bi of mi attribute-
value vectors (instances). Each instance j of Bi is described by the real valued
vector xij which includes values of the continuous explanatory variables Xi from
the data relations in the foreign key conditions along the tree path from the root
to the leaf under analysis. The multiple instances of Bi are only those instances
which satisfy the conjunction of test conditions for the reference object i. An
example of the construction of the bag of attribute-value vectors which describe
a reference object falling in a leaf is reported in Example 4.

Example 4. Let us consider:
1. a database schema which includes the data relations

Molecule(MolId, LogP and Muta)
Atom(Atomid, MolId, Charge)
Bond(BondId, AtomId1, AtomId2, Type)

2. an instance of this database which collects the tuples:
molecule(m1, 12, 5.1). molecule(m2, 2, 10.1).
atom(a1, m1, 2.3). atom(a2, m1, 2.5). atom(a4, m1, -0.5). atom(a5, m2, 5.1).
bond(b1, a1, a2, 5). bond(b2, a1, a2, 2). bond(b3, a1, a3, 1).
bond(b4, a5, a6, 2). bond(b5, a6, a5, 1).

3. a relational tree that partitions molecules according to atoms and bond is the
following:

1. molecule(I, L, M)
2. | − −(yes)[molecule(I, L, M),atom(A,M,C) ]
3. | | − − (yes)[molecule(I,L,M),atom(A,M,C), C≤2.3]
4. | |−− (yes)[molecule(I,L,M),atom(A,M,C), C≤2.3, bond(B,A,A2,T]
5. | | − − (no) ...
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6. | | − − (no)...
7. | − −(no) ...

m1 satisfies the conjunction of binary conditions along the path from the node
1 to the node 4, that is, at least one atom with a charge less or equal to 2.3
belongs to m1 and this atom is involved in at least one bond. The intensional
description provided by the tree at this node can be expressed as the query:

m1(L, C, T) :- molecule(m1,L,Y), atom(M,A,C), C≤2.3, bond(B,A,K,T)
According to the query reported above m1 is mapped into the bag attribute-
value vectors 〈12, 2.3, 5〉 〈12, 2.3, 2〉 〈12, 2.3, 1〉 and the entire bag is assigned
to the response value 5.1.

After constructing the multiple attribute-value vectors which represent each ref-
erence object falling in the leaf, primary instances and regression coefficients are
computed within an EM algorithm that aims at minimizing the least square er-
ror of the hyperplane on the training primary instances constructed at the leaf.
The hyperplane is built stepwise by sequencing straight line regressions and re-
moving the linear effect of the introduced variables each time a new explanatory
variable (regression term) is added to the model. The selection of this best term
is based on the strength of the resulting least square error on the chosen primary
values for Xi. Basics of stepwise construction are provided in Example 5.

Example 5. Suppose we are interested in analyzing a response variable Y in a
region R of a feature space described by two continuous explanatory variables X1

and X2. In the stepwise construction of a regression model, the initial regression
model is approximated by regressing on X1 for the whole region R, that is
Ŷ = â0 + b̂0X1. As explained in [8], the correct procedure to follow in order to
introduce the effect of another variable in the partially constructed regression
model is to eliminate the effect of X1. In practice, we have to compute the
regression model for the whole region R, that is, X̂2 = â20 + b̂21X1 and to
compute the residuals X ′

2 = X2 − X̂2 and Y ′ = Y − Ŷ = Y − (â0 + b̂0X1).
Finally by regressing Y ′ on X ′

2 alone Y ′ = β̂03 + β̂13X
′
2 and substituting the

equations of X ′
2 and Y ′ in the last equation we obtain:

Y − (β̂01 + β̂11X1) = β̂03 + β̂13(X2 − (β̂02 + β̂12X1)).
that is, Y = (β̂03 + β̂11 − β̂02β13) + (β̂11 − β̂12 β̂13)X1 + β̂13X2.

For each bag, the primary value corresponding to the variable to be added to the
hyperplane is chosen within the EM implementation described in Algorithm 1.
Each time a new variable is added to the hyperplane, primary values of this vari-
able are definitely assigned to the values (I) chosen in the E step. The algorithm
starts with an initial random guess (IR) at the hypothesis which is iteratively
refined. Each iteration consists in two main steps. In the E step, a binding of
Xi is selected from each bag to obtain an hypothesis with least square error
(L-error) with respect to the current best guess at the correct hypothesis. In the
M step, the current guess of the hypothesis is refined by using linear regression
to construct a new regression model from the instances provided at the previous
step. The new hyperplane is constructed by determining the coefficient of the



Top-Down Induction of Relational Model Trees in Multi-instance Learning 33

Algorithm 1. EM based selection of regression coefficients and primary values
1: Input: (1) the vector B of n bags bi, where the bag bi includes the values xi1, . . . xim

for the continuous explanatory variable X, (2) the list L of the explanatory vari-
ables already included in the hyperplane, (3) the vector P ′ of the residuals of the
primary instances constructed from the explanatory variables already included in
the hyperplane, (4) a vector Y ′ of the residuals of the response values.

2: Output: (1) the regression coefficient of a straight-line regression between Y’ and
residual of X’, (2) the vector I of n primary values of X, one for each bag in B

3: function EM(in : B, L, P ′, Y ′; out : b, I);
4: globalL:=MAX;
5: for r=1, . . . ,R do
6: assign randomly the primary instances to IR and determine residuals IR’ by

removing the effect of variables in L;
7: determine the regression coefficient b over IR’;
8: bestL=MAX; currentL=0; found=true;
9: while found do

10: IC:=� ; currentL:=0;
11: for each bi in B do
12: Let xij be the instance value in bi that minimizes L(y′

i, x
′
ij , b)}; /* x′

ij is the
residual of xij */

13: IC = IC ∪ xij ; currentL:=currentL+ L(y′
i, x

′
ij , b

′);
14: end for
15: if currentL≥bestL then
16: found:=false;
17: else
18: bestL:=currentL; bR:=b; IR:=IC;
19: perform linear regression over IC to obtain b
20: end if
21: end while
22: if bestL<globalL then
23: globalL:=bestL; b:=bR; I:=IR
24: end if
25: end for
26: return 〈b,I〉

straight-line regression between the residual of Y and the residual of Xi. Both
residuals are computed in a stepwise fashion by iteratively removing the effect
of the already performed steps of regression. The coefficients of the (sequence
of) straight-line regressions (e.g. â20 and b̂21 in Example 5) to determine the
residual values involved in an EM step are computed over the primary instances
which have already been constructed within the stepwise construction of the hy-
perplane. EM steps are repeated until the algorithm converges. Due to the fact
that the result of any EM run may be influenced by the initial random hypoth-
esis, it is run several times on the same data collection using random restarts.
In Algorithm 1, R is the number of random restarts to be used.

After selecting the variable to be added to the hyperplane, the contribution of
this term is evaluated according to the F-test and eventually dropped whenever
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it is not statistically significant. In this last case, the addition of any other
candidate cannot be statistically significant, hence the hyperplane construction
can be stopped. In this way, MIRT integrates a mechanism of variable sub-
selection as a part of the hyperplane construction, thus solving possible problems
of collinearity [8]. If no variable is added to the hyperplane, the prediction at
the leaf is simply performed by means of the mean of the response values of
the reference objects falling in the leaf. Primary instances constructed within
the EM based stepwise construction of the hyperplane are stored at the leaves
and are subsequently used to determine the primary instance when an unknown
reference object has to be predicted.

An example of the stepwise construction of an hyperplane according to Algo-
rithm 1 is provided in Example 6

Example 6. Let us consider the molecules m1, m2 and m3 described according
to the atoms a1, a2, a3, a4, a5, a6 and a7. Each molecule consists of a bag of
attribute-value vectors (Logp, Charge) and a response value (Muta).

InstanceId MolID Logp Muta Atomid Charge
1 m1 2 7.5 a1 5.1
2 m1 2 7.5 a2 30
3 m1 2 7.5 a3 5
4 m2 5 12.5 a4 11
5 m2 5 12.5 a5 11.5
6 m3 3 9.8 a6 7.1
7 m3 3 9.8 a7 7

We use the stepwise procedure to estimate the regression coefficients of an hy-
perplane to predict Muta that includes LogP and Charge. For simplicity, we
consider R=1 and no F-test is performed when adding a new variable to the
hyperplane.

An initial hyperplane is approximated by choosing to regress Muta on either
LogP or Charge. At this aim, we compute the regression model for LogP by
randomly selecting primary values of LogP from each bag and iterating in order
to minimize the least square error (see Algorithm 1). Since LogP assumes a
single value on each bag, a single iteration is performed and it computes:

Muta = 4.52 + 1.62LogP with I = [2, 5, 3] and globalL = 0.25 (1)

Similarly, we compute coefficients of a regression model for the multi-instance
value of Charge. Let us consider the case that a random choice returns [5.1,11,7]
as primary values for Charge. We use these primary values to determine:

Muta = 3.61 + 0.82Charge (2)

Equation 2 minimizes the least square error on the charge values IC=[5,11.5, 7.1]
(with currentL=0.196). By using this new set of primary values, we compute:

Muta = 3.65 + 0.81Charge (3)
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that minimizes the least square error with the charge values IC=[5,11.5, 7.1]
(with currentL=0.195). This new set of primary values for Charge will lead to
stop EM iteration and return:

Muta = 3.65 + 0.81Charge with I = [5, 11.5, 7.1] and globalL = 0.19. (4)

The initial hyperplane is then approximated by regressing Muta on Charge
according to Equation 4. The residual attribute Muta′ is computed as follows:

Muta′ = Muta− (3.65 + 0.81Charge) Muta′ = [−0.23,−0.12, 0.35] (5)

Finally, we introduce the effect of LogP . Let us consider the case the random
choice return [2,5,3] as primary values for LogP . We firstly compute the residuals
LogP ′ by using the primary values of Charge in Equation 4, that is:

LogP ′ = LogP − (−0.52 + 0.5Charge) (6)

and then we compute:
Muta′ = −10.99LogP ′ (7)

which is proved to be the best one according to Algorithm 1. In this way we
complete the construction of the following hyperplane:

Muta = (3.65 + 0.81Charge)− 10.99(LogP − (−0.52 + 0.5Charge)) (8)

by constructing as primary instances of m1, m2 and m3, the attribute-value
vectors 〈m1, 2, 5〉, 〈m2, 5, 11.5〉 and 〈m3, 3, 7.1〉, respectively.

4.3 Predicting Unknown Reference Objects

Let τ be the relational model tree induced from relational data stored in D.
Let H be the schema of D and ro be a test reference object that is stored in a
new instance (T ) of the same database schema H . T contains the task-relevant
objects which interact with ro according to the foreign key constraints defined
in H . The response value of ro is unknown in T .

Starting from the root node of τ , ro is recursively passed down to the left
(or right) child according to the fact that the splitting test on left (or right)
edge is satisfied. When a leaf node is reached, MIRT constructs instances which
describe ro in T according to the task-relevant objects which are related to
ro in the partition at hand. The structure (attribute vector) of these instances
includes only the explanatory variables (X1, X2, . . . , Xd) which are involved in
the hyperplane tagging the leaf. The primary instance of ro is then constructed
by fixing, for each variable, one binding over the bag and then by minimizing
the distance from the training primary instances stored at the leaf.
Formally speaking, given:

1. the leaf t such that ro reaches t;
2. the hyperplane y = g(X) which tags t such that the attribute vector X is

spanned by d continuous variables X1, . . . , Xd;
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3. the set P of the training primary instances defined on X and stored in t;
4. the bag Bro of the database instances defined on X and constructed over T

to represent the reference object ro falling in t;
5. the set ψi (χi), that is, the range of Xi over P (R).

MIRT constructs the primary instance o of ro by assigning each Xi with one
value over χi in order to minimize the distance from training primary instances
stored in P , that is:

o = min
o∈χ1×χ2...×χd

min
t∈T

distance(p, t). (9)

The distance between p and t is computed on the basis of the Euclidean distance
measure, that is:

distance(p, t) =
√ ∑

i=1,...,d

(p[Xi])− (t[Xi])2. (10)

Adopting the classical Euclidean distance, as in Equation 10, brings the prob-
lem of combining variables whose range may differ in several orders of magnitude.
To overcome this problem, each value of Xi is scaled within the range [0, 1]: the
lowest (highest) value is assigned the real value 0 (1). The scaled values of p[Xi]
and t[Xi] are obtained as follows:

p[Xi]scaled =
p[Xi]−minj

maxi −mini
and t[Xi]scaled =

t[Xi]−minj

maxi −mini
, (11)

where mini = min
xi∈χi∪ψi

xi and maxi = max
xi∈χi∪ψi

xi. Once the primary instance o

is constructed, it is used to predict the unknown response value by assigning the
explanatory variables in the hyperplane at t to the corresponding values in o.

5 Experiments

MIRT is implemented in a Multi-Relational Data Mining system tightly coupled
with a relational database (Oracle 10g) and it is empirically evaluated on bio-
logical and geographical relational databases. Biological databases represent a
benchmark application domain in multi-instance learning.

Experimental Setting. Each dataset is analyzed by means of a 10-fold cross-
validation. Ten databases are created so that MIRT can be trained on nine
databases and tested on the hold-out database. The system performance is eval-
uated on the basis of the average mean square error (MSE), that is:

MSE =
1
k

10∑
i=1

√√√√√ 1
#SDi

#SDi∑
j=1

(yj − ŷj(D/Di))2 (12)
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where D = {D1, . . . , Dk} is a cross-validation partition, Di is a set of indices
of testing databases, k is the number of folds (i.e., 10), #SDi is the number of
reference objects stored in Di and ŷj(D/Di) is the value predicted for the j-th
testing reference object by the model tree induced on D/Di.

The thresholds for the stopping criteria are fixed as follows: the minimum
number of reference objects falling in an internal node must be greater than the
square root of the number of reference objects in the entire database, and the
coefficient of determination in an internal node must be below 0.8. R is set to
5, while the maximum number of foreign key constraints to be added with a
foreign key test is set to 2.

MIRT is compared with Mr-SMOTI [1] which induces a relational model tree
that interleaves splitting tests and regression steps. At regression steps, Mr-
SMOTI estimates the regression coefficients of straight-line regressions by as-
suming multiple-bindings of a non-determinate variable as single instances of
least square regression. On one database, i.e. Mutagenesis, we compare MIRT
with RE-MAUVE and TILDE-RT. RE-MAUVE is a relational model tree learner
which resorts to aggregates to deal with non-determinate variables. TILDE-RT
is a relational regression tree learner which associates a constant to each leaf. Fi-
nally, we compare MIRT with the propositional model tree learners SMOTI and
M5’. In this last case, multi-relational data are transformed into a single table
format. Two different transformations are considered. The former (P1) creates a
single table by computing join operations for all possible foreign key paths rooted
in the target table. This transformation may create multiple tuples for the same
reference object. The latter transformation (P2) differs from the previous one
because it does not generate multiple tuples for the same reference object. It
is obtained by computing aggregates (i.e. the average for continuous values and
the mode for discrete values) of-non-determinate variables. In the case of P1 we
compute the MSE with respect to the average of the multiple response values
output for the same test reference object as final prediction (MSE-G). We also
compute the MSE by considering the response value as prediction of each single
instance (MSE-S). Differently, in the case of P2, a single response is directly
output for each test reference object. For the pairwise comparison of systems,
the non-parametric Wilcoxon two-sample paired signed rank test [17] is used.

Data Description. MIRT is tested on four real databases, that is, Mutagene-
sis, Biodegradability, North West England (NWE) and Munich. Mutagenesis
[21] and Biodegradability [10] are molecular databases used as a benchmark
for several ILP systems. Mutagenesis is evaluated in three different settings. B0
consists of those data obtained with the molecular modeling package QUANTA.
For each compound it obtains the atoms, bonds, bond types, atom types, and
partial charges on atoms. B1 consists of definitions in B0 plus indicators ind1,
and inda in molecule table. B2 consists in B1 plus variables (attributes) logp, and
lumo. Biodegradability is evaluated in four settings. B0 consists of those data
derived with SMILES without any global feature on molecule. B1 adds the nu-
merical attributes mWeight and logP. B2 extends B0 by adding the indicator on
molecular activity, while B3 includes all global features describing the molecules.
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Details are provided in [1]. NWE is a collection of geo-referenced census data pro-
vided by the United Kingdom (UK) 1998 census. NWE census data includes val-
ues of mortality rate (response variable) and deprivation indexes geo-referenced
at the level of 212 wards. Data also include 1045 rails, 2763 roads, 374 urban areas
and 1040 waters crossing wards for a total of 5434 tuples. NWE dataset is pro-
vided in the European project SPIN!(http://www.ais.fraunhofer.de/KD/SPIN/
project.html). Munich (http://www.di.uniba. it/%7Ececi/micFiles/munich db.
tar.gz) describes rent-price (response variable) of 2179 flats geo-referenced within
the Munich subquarters. The Munich metropolitan area is divided into 3 areal
zones, each decomposed into 64 districts, for a total of 446 quarters for a total of
6808 tuples. This data was collected in 1998 to develop the Munich rental guide
in 1999.

Results. The average MSE of the multi-relational systems is reported in Table
1. For Mutagensis (B1 and B2), we report MSE of RE-MAUVE and TILDE-
RT taken from [22]12. The comparison between MIRT and Mr-SMOTI (as well
as Re-MAUVE and TILDE-RT for Mutagenesis) confirms our intuition that
the accuracy of a relational model tree is generally improved when regression
coefficients of non-determinate variables are estimated according to principles of
multi-instance learning. The only database where Mr-SMOTI outperforms MIRT
is Mutagenesis B2, in which mutagenecity of molecule strongly depends on the
numeric properties of molecules (i.e., lumo and logP) which have single values
for each molecule. This result is a confirmation that the stepwise construction
of a model tree by interleaving split nodes and regression nodes outperforms the
classical construction of a model tree by firstly partitioning data set and then
locally deriving the hyperplanes to predict reference objects at each node [1].
Anyway, the advantages of a tree structure with split and regression nodes may
be decreased by the presence of outliers values over non-determinate variables.
This consideration suggests a future direction of the research described in this
work, that is, employing the principles of multi-instance learning in the stepwise
induction of relational model trees with split and regression nodes. The results
on Mutagenesis show that MIRT also outperforms RE-MAUVE and TILDE-RT.

The results of the comparison between MIRT, SMOTI and M5’ are reported
in Table 2. The comparison is generally in favor of MIRT. The only statistically
significant tests (p≤0.05) where a propositional learner (SMOTI -P2) outper-
forms MIRT concern Biodegradability (B2-B3). In general, the comparison of
accuracy confirms not only the advantages of the structural approach over the

1 The MSE of Mr-SMOTI on Mutagenesis significantly differs from the values reported
in [22]. Differences may depend from a different tuning of parameters. In this work,
we run Mr-SMOTI by allowing the possibility of learning foreign key tests introduc-
ing two foreign keys simultaneously (the default is 1), learning a foreign key test
and an attribute test simultaneously in the same test (by default this possibility is
disabled), filtering splitting tests which select less than 5 molecules on the left and
right side of the tree.

2 The MSE values reported in [22] are without the square radix.
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Table 1. MIRT vs Mr-SMOTI, Re-Mauve and TILDE-RT: MSE of the model trees
induced on the 10-fold CV of databases. Best MSE are in italics. “-” (“+“) means
that Mr-SMOTI performs worse (better) than MIRT in a Wilcoxon Test. “–” (“++“)
denotes the statistically significant values (p≤0.05).

DB MIRT Mr-
SMOTI

Re-
MAUVE
no agg

Re-
MAUVE
agg

TILDE-
RT

TILDE-
RT agg

Mutgenesis B0 1.4 1.67 –

B1 1.11 1.28 - 1.40 1.4

B2 1.12 0.95+ 1.20 1.20 1.24 1.36

Biodegradability B0 1.32 1.37 -

B1 1.206 1.25 -

B2 0.136 0.49 –

B3 0.142 0.41 –

NWE 0.0024 0.0026 =

Munich 4.66 4.78 –

Table 2. MIRT vs SMOTI and M5’ (P1 and P2): MSE of the model trees induced
on the 10-fold CV of databases. For SMOTI (P1) not all values are available, since
the system returns error of memory. Best MSE are in italics. “-” (“+“) means that
SMOTI/M5’ performs worse (better) than MIRT in a Wilcoxon Test. “–” (“++“)
denotes the statistically significant values (p≤0.05).

DB
MIRT SMOTI (P1) M5(P1) SMOTI

(P2)
M5(P2)

MSE MSE-G MSE-S MSE-G MSE-S MSE MSE

Mutgenesis B0 1.4 2.44 – 3.92 – 1.68 - 2.48 – 2.57 - 1.55 -

B1 1.11 1.62 – 1.65 – 1.16 - 2.10 – 1.38 - 1.13 =

B2 1.12 2.19 - 2.15 – 1.05 - 1.05 - 1.009 + 1.007 +

BiodegradabilityB0 1.32 1.44 – 1.35 - 1.63 – 1.41 -

B1 1.20 1.68 – 1.71 – 2.13 – 1.28 -

B2 0.13 0.12 + 0.12 + 0.06 ++ 0.18–

B3 0.14 0.14 = 0.15 - 0.05 ++ 0.18 –

NWE 0.0024 0.0028 – 0.0026 = 0.0028 - 0.0026 - 0.003 – 0.0023 +

Munich 4.66 5.90 – 6.03 – 5.25 – 5.27 – 5.49 – 4.62 +

propositional one when mining model trees from multi-relational data, but also
the validity of multi-instance approaches in relational regression.

6 Conclusions

MIRT is a novel multi-relational data mining system which induces a relational
model tree to predict the response value of a reference object (target object)
by taking into account non-determinate task-relevant objects. This work points
out the hypothesis that it is almost never the case that all multiple-bindings of
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a non-determinate variable contributed to the observed response value. Under
this hypothesis, a piece-wise hyperplane is constructed by locally sequencing
straight-line regressions in a stepwise fashion and estimating coefficients of such
regressions on the basis of only the best bindings of the regression variables.
Bindings are chosen within an EM implementation that minimizes least square
error on primary values. Explanatory variables involved into an hyperplane are
a subset of the explanatory variables from the data relations which appear in the
splitting test along the tree path from the root to a leaf. Problems of collinearity
are naturally solved by stopping the hyperplane construction when the addition
of a term is not statistically significant. The comparison between MIRT and
the relational model tree system Mr-SMOTI as well as the propositional model
tree systems, SMOTI and M5’, confirm that identifying the primary instances
outperforms existing propositional and structural systems.As a future study, we
plan to apply principles of multi-instance learning to construct a relational model
tree with split and regression nodes.
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Abstract. The problem of determining the Worse Case Execution Time
(WCET) of a piece of code is a fundamental one in the Real Time Sys-
tems community. Existing methods either try to gain this information
by analysis of the program code or by running extensive timing analy-
ses. This paper presents a new approach to the problem based on using
Machine Learning in the form of ILP to infer program properties based
on sample executions of the code. Additionally, significant improvements
in the range of functions learnable and the time taken for learning can
be made by the application of more advanced ILP techniques.

Keywords: Worst Case Execution Time (WCET), Inductive Logic Pro-
gramming (ILP), Lazy Learning, Symmetry, Efficiency.

1 Introduction

In the area of Real-Time Systems (RTS), the temporal behaviour of systems
is of critical importance. In particular, a substantial amount of research effort
goes into the issue of guaranteeing that code will be executed within a given
time frame. While much scheduling theory exists on this matter, it is commonly
assumed that the timing behaviour of the individual software components is
known. One of the temporal properties of a process that schedulers require is
that of the Worst Case Execution Time (WCET). As the name implies, this is
the longest time that the process may require to run given the worst case input
possible.

A fundamental problem exists however in determining the WCET of a pro-
gram. The WCET of a program is in general undecidable, due to the well-known
halting problem [1]. Therefore in the general case, any non-exhaustive attempt
to determine this quantity will only ever be able to return an approximation.
We propose that the use of Machine Learning may be a viable alternative to
existing methods in the field, allowing for the accurate approximation of WCET
in a competitive time.

One particular aspect of determining WCET that is examined here is the issue
of deciding on the number of times that a loop is executed. Determining this
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quantity with high accuracy has the ability to massively increase the accuracy
for the WCET approximation as a whole. Again, this problem is in general
undecidable, though there are well-defined classes subclasses of loop for which
the problem is mathematically decidable. One of these classes, Presburger Loops,
will be studied in this paper. For this class, our technique is able to produce an
exact solution. Program flow analysis, and in particularly loop bound estimation,
has been identified as an important source of overestimation, up to 30%, leading
to a significant waste in resources.

There are several aspects of the WCET problem that makes Machine Learn-
ing, and ILP in particular, a good candidate for providing a solution. The data
to learn from possesses many characteristics that are highly desirable in this
realm: it is noiseless, discrete, deterministic and available in virtually limitless
quantities [2]. These properties mean that many problems that occur in more
complex domains should be avoided completely here.

Nevertheless, there are real challenges in using ILP for this task. These stem
primarily from two sources. Firstly, basic ILP isn’t particularly well-suited to the
learning of numeric data and equation discovery. Secondly, the range of functions
to be considered as hypotheses is vast. A significant part of this paper is devoted
to showing how these limitations can be overcome in order to massively increase
the speed with which hypotheses can be found and to allow the discovery of
equations not possible with a naively coded learner.

The rest of this paper proceeds as follows. Firstly, the background to the
WCET problem is presented in section 2 along with current approaches to its
solution. The suitability of ILP and other related methods are then considered in
section 3. Section 4 deals with the construction of a new ILP formulation to solve
the a particular aspect of the problem. Firstly, a simple, previously published [2]
implementation capable of learning the number of loop executions is presented.
The problems that exist with this implementation are then highlighted. From
this, a novel implmentation is then presented, through a series of refinements
using more advanced ILP techniques, resulting in a learner capable of acquiring
a larger class of equations and in a faster time. Results showing the improved
ability of the more advanced learner to solve the problem are then given in
section 5. The massive improvement in the behaviour of the more advanced
learner is also shown. A related result is shown in section 6, in which machine
learning was successfully applied to another aspect of WCET analysis, learning
a branch predictor. Finally section 7 concludes and considers how ILP can be
applied to other aspects of the WCET.

2 Worst-Case Execution Time Analysis

There are three current approaches to estimating WCET. Static analysis,
measurement-based analysis and hybrid analysis. Static analysis examines the
code and execution environment mathematically to build a model to reason
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about the program behaviour. In contrast measurement-based analysis comes to
an estimate through running execution tests on the code and target platform
directly. Hybrid analysis combines the two previous approaches, building mod-
els based on the code and combining these with timing measurements found
from actual executions. Each of these approaches has different strengths and
weaknesses.

2.1 Static Analysis

Static analysis is based on automated reasoning about the execution of a program
based on its code and the execution hardware. As the determination of WCET is
in general undecidable, static analysis will not in general yield the correct WCET
of a piece of code. Instead, the incompleteness of the reasoning process ensures
that the estimated WCET is always at least as long as the actual WCET (safe),
with the overestimate being termed the pessimism. This safety is important
in hard real-time systems where deadlines must be guaranteed to be met and
overruns could literally cost lives. However, pessimism is undesirable as it can
lead to underutilised hardware resources or unnecessary investment in faster
equipment.

Typically static analysis is done in three phases; flow analysis, low level anal-
ysis and calculation.In the first phase, the analyser reasons about the possible
paths that may be taken through the code. It does this by building a control
flow graph (CFG) showing how control passes between basic blocks of code, and
then reasoning about this flow. There are several common techniques that may
be utilised such as abstract interpretation [3] and symbolic execution [4], the for-
mer simulating the effect of code on a value range rather than individual input
values and the latter building up constraints that replicate the logical flow of
the program. In either case, the CFG will be annotated with derived flow facts,
such as the maximum number of loop executions and infeasible paths. Due to
the undecidability of the problem, these facts are incomplete.

Following this, low level analysis determines the time that would be taken to
execute particular paths on the target platform. This analysis must account for
advanced hardware features such as processor pipelines and branch predictors.
As modern processors have become more advanced, the potential is for the de-
gree of pessimism to rise [5]. For modern processors, technical details are often
difficult to obtain due to commercial confidentially. Therefore, current analysis
is generally restricted to parts of the processor for which the low level behaviour
is well known and for which analysis is feasible. It appears that this problem will
only get worse as processors become even more complex, such as Multi-Processor
Systems on a Chip (MPSoC).

Finally, the calculation phase combines these two earlier phases to reveal
the WCET estimate of the code. There are three main methods used for this;
structure-based [6], path-based [7] and implicit path enumeration (IPET) [8].
Each integrates the flow and timing information, but using different techniques.
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2.2 Measurement-Based Analysis

The other existing approach to estimating WCET is measurement based analy-
sis. Here, the code is analysed through repeatedly running it on different inputs
in an attempt to manually find and exercise the worse case path.

There are three methods that may be used to do this. Firstly, it is possible
to manual generate test data based on human reasoning about the inputs most
likely to be time-consuming to process. This can be effective if the tester has
good knowledge of the code and problem domain, but this is often not the case.
Secondly, a coverage metric can be employed, which defines a set of necessary
execution conditions that must be performed by the test suite [9]. For example,
in order to achieve branch coverage, it is necessary that both the true and false
branch of each conditional are exercised by tests. The coverage method of test-
ing enables systematic examination of the software, but the source code must be
available; this is not always possible when library functions are called. Finally,
testing can be automated through the use of genetic algorithms [10]. The input
used for a test is the chromosome and familiar cross-over and mutation tech-
niques are used to explore the space of all inputs. Fitness can either be scored
based directly on execution time, or based on factors within the code such as
the number of times a loop executes or whether particular conditional branches
were taken.

For any non-exhaustive test data set, however generated, there always re-
mains the possibility that the WCET has not been observed. This means that
measurement-based approaches cannot be considered safe. In practice, this is
overcome by allocating a margin of error to the worst observed time (for exam-
ple 10%), though this still does not guarantee the safety of the approach. For
any hard real-time system in which deadlines must be met, measurement-based
analysis is unsuitable. However, there are many soft real-time applications where
an occasional missed deadline can be tolerated. For example, in telecommuni-
cation applications, failure to decode a single frame of video in time to display
may be acceptable providing such failures are infrequent.

2.3 Hybrid Analysis

Hybrid analysis works like static analysis, but circumvents the problem of unhan-
dleably complex hardware by using actual program executions for the low-level
phase. The flow analysis and calculation phases are typically performed in a
similar manner to that used in static analysis, with the low-level data coming
directly from real executions of the basic blocks.

This approach removes the excessive pessimism associated with low-level
analysis on highly complex or poorly understood hardware, but also results in
safety no longer being guaranteed. While the testing guarantees the accuracy
of timing behaviour for individual blocks, safety may be lost through interac-
tions over longer ranges, such as through pipelines or alterations in the cache
contents.
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Nevertheless, hybrid analysis is becoming used in domains where occasional
deadline misses can be tolerated. The combination of rigorous static code analysis
and measurement-based hardware analysis combines some of the strengths of
both approaches.

3 Suitability of ILP and Related Methods

3.1 Suitability of ILP

Given the problems in the existing methods for WCET, there is potential for a
alternative approach. A technique based on Machine Learning may fit the criteria
for this approach. Using Machine Learning, execution traces of programs can be
used to infer a mathematical model which is able to reproduce the observed
data. This can then be used to provide information to be incorporated into a
static analysis. For example, in the case of determining loop bounds, which is
examined later, traces of the number of loop executions observed in practice
can be used to construct a parametric model which enables the number of loop
bounds to be predicted for any given input. This can then be incorporated into
a static analysis at the flow analysis stage as a flow fact. Obtaining data through
observation rather than through analysis of the code means the results may no
longer be safe; this problem may be addressable through a suitable choice of
which, and how many, execution traces to learn from.

The approach is somewhat akin to hybrid analysis, though rather than incor-
porate observed data directly into the analysis, it is used to build a model which
can then be included. Additionally, whereas hybrid analysis uses only observed
behaviour for the low-level stage, our approach allows models based on observed
data to be included at the flow analysis stage as well. Finally, this method allows
existing static analysis to be retained and complements it with additional infor-
mation; in hybrid analysis, reasoning about the low-level behaviour is discarded
and replaced in its entirety by execution data.

There are several aspects of the problem which make ILP an ideal Machine
Learning technique for the task at hand. The data from which the model will
be learned is noiseless; this removes one of the problems that frequently makes
ILP difficult to apply to a domain. The variables likely to be encountered are
discrete, and often either intervals or categories. This immediately suggests the
use of a first-order logical representation for the data and theories such as is
seen in ILP. The examples to be learned from will only be positive; one will be
unlikely to observe, for example, how many times a loop is not executed. Off the
shelf ILP tools such as Progol [11] and Aleph [12] have the capability to learn
from positive only data built in.

3.2 Dynamic Invariant Detection

Learning the number of loop executions as a function of program variables is
highly analogous to the process of dynamic invariant detection. Invariants are
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relationships between program variables that must always hold true at a cer-
tain point in a program. Detecting invariants statically is closely related to the
static analysis techniques already described: invariants are found by reasoning
mathematically about the program. In contrast, the dynamic technique infers
invariants based on observing which properties are always true over a set of
program traces.

The most widely used dynamic invariant detector is Daikon [13], which works
in four stages. Firstly, the program to be examined is instrumented to record
all program variables at each procedure entry and exit point. The instrumented
program is then run on a user specified suite of test examples. Next, the resulting
traces are processed to establish invariants for particular instrumentation points,
and finally these candidate invariants are filtered to remove implied invariants
and those likely to be due to chance observations.

Daikon detects a wide range of relationships that can hold between vari-
ables (including unary, binary and trinary relationships) and for many different
datatypes. However, Daikon in an unmodified form cannot be used to learn
program flow information. Daikon learns constraints that apply at procedure
entry and exit; for learning of program flow, knowledge is required of how many
times the body of a loop is entered and which branch is taken at conditional
statements.

While conceivably these problems could be overcome by adding additional
variables to the program, such as counters to loops1, the learning bias is hard-
coded into Daikon and difficult to modify. For ILP systems, this can be easily
modified through altering the background knowledge. Furthermore, it is unclear
how well Daikon can handle complex formulae with multiple variables and several
constants which must be abducted.

3.3 LAGRAMGE

Lagramge [14] is a non-linear numerical regression (aka equation discovery)
tool closely related to the ILP family, in which the user provides a grammar to
describe the range of possible equations that should be considered in the search
for the best fit for the data with respect to a given optimality criterion, typi-
cally the least squares. Here the grammar provides a description of the way how
the independent variables could be linked through the use of certain operators
to build an equation that best models the data in a way similar to the use of
background predicates in mainstream ILP. The tool offers a choice between or-
dinary and differential equations, and later versions allow for the simultaneous
learning of several equations. There are two aspects that make Lagramge un-
suitable for the task at hand: the variable range cannot be restricted to integers,
and, even more importantly, the algorithm focuses on minimising a function of
the error on the average, whereas here one is interested in outliers and extreme
behaviour.

1 Though doing so would modify the code which may affect the compiled code gener-
ated, especially in the presence of compiler optimisations.
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4 Loop Bound Learning

4.1 Problem Domain

In order to understand why achieving tight loops bounds for WCET analysis is
important, it is worth considering the example of the typical nested loop used
in many sort routines.

for i = 0 to n
for j = 0 to n− i− 1

if a[j ] < a[j+1 ] then
...

end
next

next

For many existing WCET tools, the maximum number of executions of the
outer loop will be found to be n, and the maximum number of executions of
the inner loop will be n− 1. Traditional WCET techniques fail to determine the
existence of a relationship between the number of loop executions and a counter,
simply assuming that the worst possible value may occur in all interations. This
results in an estimate of n2−n executions of the loop body. In reality, the inner
loop only executes n− 1 times when i is 0 and fewer in all other circumstances.

The actual total number of executions of the inner loop body will be n2−n
2 ,

exactly half that obtained by a basic analysis of the loops. Consequentially, we
would expect the estimated execution time to be immensely pessimistic and
twice the actual execution time. This pessimism arises in the cases where the
number of executions of the inner loop is variable and depends on the value
of the outer loop counter. A relational formula linking the loop executions to
variables in the program can accurately record this situation.

No existing WCET technique is able to automatically detect such dependen-
cies in program flow. As will be shown in later sections, through the use of
machine learning for equation discovery, it is possible to establish relationships
such as these.

Loop bounds can be data dependent and in the general case can be expressed
with arbitrary complexity. These reasons are key to why the problem is classed as
undecidable in the general sense [15]. However it is possible to describe restricted
classes of loops for which the loop bound is a mathematically decidable problem.
Presburger loops are one such class.

Presburger expressions [16] can be written in the form

k +
∑

p

apVp k, ap ∈ R

where Vp are variables. The number of executions of a loop can be decided if
the loop conditionals are Presburger expressions in which the variables are either
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% tp(A,B) where B = A * (A - 1) / 2
tp(1,0). tp(2,1). tp(3,3). tp(4,6).
tp(5,10). tp(6,15). tp(7,21). tp(8,28).
...

Fig. 1. Sort routine data set

loop counters from an outer containing loop or program variables which do not
have their value changed.

for i = (α0 +
∑

p αpVp) to (α′
0 +

∑
p α′

pVp)
for j = (β0 + βii +

∑
p βpVp) to (β′

0 + β′
ii +

∑
p β′

pVp)
for k = (γ0 + γii + γjj +

∑
p γpVp) to (γ′

0 + γ′
ii + γ′

jj +
∑

p γ′
pVp)

...
next

next
next

In the remainder of this paper, we shall restrict the class of loops considered to
Presburger loops. There are several reasons for this. Firstly, many nested loops
in actual program code correspond to this class, making the results relevant
for real world situations. Secondly, as the result is decidable for this class, it is
possible to generate data and check the accuracy of learned results without any
complications. Finally, for a restricted class such as this, it is possible to make
improvements to the efficiency of the learning algorithm based on knowlegde of
the target concepts.

4.2 A Naive Loop Bound Learner

The potential of using ILP to learn a WCET bound was first shown by Kazakov
and Bate [2] on the case of learning nested loop bounds. It is necessary to give an
overview of this work here, as subsequent sections go on to discuss the problems
with this implementation and develop an improved learner for the same task.

The use of ILP can be demonstrated with a sort routine which illustrates the
case of nested loops where the inner loop bounds are functionally dependent on
the outer loop counter. The known equation for this routine was then used to
generate pairs of numbers representing the upper bound n and the corresponding
number of times of running the inner loop body (see Fig. 1). The variable range
was set to n ∈ {1, . . . , 30}.

Two background predicates, sum/3 and product/3, were used which calcu-
lated the sum and product of two arguments respectively. Using this formulation
and data set, Progol4.4 finds a one-rule model.

tp(A,B) :- product(C,A,A),
sum(D,B,A),
sum(C,B,D).
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This translates to a system of three equations:

C = A×A

D = A + B

C = B + D

Note that the division operator is not part of the background knowledge, nor
is Progol allowed to use constants in its hypotheses. Nevertheless, the result is
correct, albeit expressed in a somewhat unusual way. Indeed, the above equations
can be reduced to:

B =
A× (A− 1)

2
This is, of course, the correct formula.

Using a similar formulation, it was also shown that simple loops and nested
invariant loops can be learned [2]. These early experiments are mostly valuable
as a proof of concept, but they already show the potential for empirically de-
riving accurate upper bound estimates with acceptable amounts of processing.
Previously, automatic processing in the WCET domain had not been able to ac-
quire parametric formulae for loop nesting where the inner loop counter depends
on the outer.

4.3 Limitations of the Naive Loop Bound Learner

While the learner based on the two background predicates sum/3 and product/3
was able to automatically acquire a range of simple expressions for loop bounds,
it is unable to acquire the full range of Presburger loops.

In fact, it is not necessary to even look at nested loops to find the first example
for which the naive learner cannot find the correct formula. A loop as simple as

for i = 0 to 1000V1 + 1000
...

next

is virtually unlearnable by the naive implementation. In order to find this for-
mula, the learner would need to abduct 2 constants from the data. As there
is no a priori reason to suppose that 1000 is a particularly interesting number,
the learner must try all possible constant combinations in order to locate this
particular example. Either the presented learner would fail to learn this formula
at all (due to resource limitations), or would take an extraordinary time to find
it. Therefore it is necessary to implement a more effective learner capable of
learning the behaviour of Presburger loops in the general case.

4.4 An Improved Loop Bound Learner

While the naive approach is capable of learning a range of functions, including
those for variously nested loops, it suffers from limitations. These are of two
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types. Firstly, the range of functions learnable is actually quite limited in prac-
tice. Secondly, the time to learn a new function increases quite considerably as
the function becomes more complex. The underlying reason for both of these is
that the search space of expressible hypotheses is a very large superset of the
potentially occurring functions. This results in some functions being very time-
consuming for the learner to reach, and potentially beyond the resource limits of
the computer. The remainder of the section develops an improved learner by out-
lining the exact sources of these limitations and describing ILP techniques that
can be used to overcome them. Aleph [12] was used in preference to Progol4.4
(which was used for the naive learner) as it included all the features necessary
for the new implementation.

Removing Impossible Hypotheses. Given that the type of functions that
should be learnable have been explicitly stated in the previous section, the first
modification in building a better learner should be to restrict the expressible
hypotheses to as close to this set as possible; there is no point in providing
background knowledge which enables a hypothesis search space much larger
than the known class of hypotheses.

It can be shown that the total number of executions, E, of a nest of Presburger
loops of depth D is equal to a function of the form

E =
D∑

β1=0

D∑
β2=0

. . .

D∑
βn=0

[
αβ1β2...βn ×

n∏
i=1

V βi

i

]

where
αβ1...βn ∈ N

All coefficients αβ1...βD = 0 if (
∑n

x=1 βx) > n
V1 . . . Vn are the variables
In other words, the function is sum of terms, where there is one constant term

and the other terms are coefficients multiplied by various combinations of the
variables. This can be a little difficult to comprehend in its generalized form, so
consider the particular case for 3 levels of nesting and two variables.

E =
3∑

β1=0

3∑
β2=0

[
αβ1β2V

β1
1 V β2

2

]

= α00 + α10V1 + α20V
2
1 + α30V

3
1 + α01V2 + α11V1V2 +

α21V
2
1 V2 + α02V

2
2 + α12V1V

2
2 + α03V

3
2

In light of this, the background knowledge for the improved learner is altered
by removing the sum/3 and product/3 predicates and replacing them with more
specialised predicates directed towards learning functions of this form. Two new
families of predicates are introduced in their place. Firstly, there is a new set
of new term generating predicates make term/X which multiply X − 1 variables
together to give a term. These terms are then taken as input to the second new
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make_term(Variable1,Variable2,Term) :-
Term is Variable1 * Variable2.

make_term(Variable1,Variable2,Variable3,Term) :-
Term is Variable1 * Variable2 * Variable3.

weighted_sum(Constant,Coefficient1,Term1,Output) :-
Output is Constant + Coefficient1 * Term1.

weighted_sum(Constant,Coefficient1,Coefficient2,Term1,Term2,Output) :-
Output is Constant + Coefficient1 * Term1 + Coefficient 2 * Term2.

Fig. 2. More Specialised Background Predicates

set of predicates weighted sum/X which produces the weighted sum of X
2 − 1

terms. Examples of some make term/X and weighted sum/X predicates are given
in fig. 2. Obviously, the more predicates of each of these types that are added,
the greater the class of hypotheses that are representable in the language, but
also the larger that the search space of hypotheses will be. For practical rea-
sons, the predicates are limited here to make term/1, make term/2, make term/3
and make term/4, and weighted sum/4, weighted sum/6 and weighted sum/8.
These prove adequate to learn the functions necessary in this paper, and in prin-
ciple they can be extended trivially to allow more functions, with greater levels
of nesting or more variables, to be learned.

Lazy Learning. Having altered the background knowledge to focus the search
space on the valid function space, the issue of the unlearnability of some functions
by the naive learner is now addressable.

The primary limitation on the functions that are learnable arises from the
need to deal with numerical constants in the discovered equation. In the exam-
ples previously considered, these constants were either absent or small positive
integers. Learning the relationship between a set of input variables and the
number of loop executions requires the discovery of an equation expressing the
loop executions as a function of the input variables. This presents problems for
traditional ILP which is very poor at generating the numbers needed for such
formulae. The problem occurs due to the construction of a bottom clause to
guide the search.

The task of learning the equation requires the construction of a formula that
is true for all the data. When the bottom clause is created, it will contain all
possible formulae that are consistent with that datum. However with no limits
on the possible formula, this will consist of an infinite number of formulae, the
majority of which are inconsistent with any other data. Even in an extremely
simplified situation in which there is only a single variable, V , and the formu-
lae for the number of loop executions, E, are limited to the form E = k + aV ,
an infinite number of formulae should be placed in the bottom clause, each with a
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unique (k, a) pair; again the vast majority would still be found to be inconsistent
with all other data points.

One approach to counter this problem is to limit the numbers that can be
considered to some given set, but this limits the hypothesis space and may
still lead to a large bottom clause and hence an over-large search space. For
these reasons, an alternative technique is adopted which retains the size of the
hypothesis space, but greatly limits the search space within it.

Lazy learning in ILP was first proposed by Srinivasan and Camacho [17].
Using this technique, clauses featuring constants can be added to the bottom
clause as usual, but the constants themselves are only determined later during
the subsequent search though the hypothesis space. This enables all the data
to be used to determine the constants instead of just the single datum used to
generate the bottom clause. Returning to the example given earlier, the bottom
clause could have a single E = k + aV clause added to it, with the actual values
of k and a being calculated at search time from all the data. Clearly, this reduces
the size of the bottom clause and consequently the search space, but crucially
not the hypotheses that can be returned. This also decreases the time spent
searching for the correct solution.2

In essence, lazy learning is used to transform the process of learning from a
search of the function space to a search of the functional form space.

Symmetry Removal. One final improvement to the learner that can be made
to reduce the size of the search space is the removal of symmetry. For example, if

target(A,B,C) :- make_term(A,B,D), weighted_sum(0,1,D,C).

fits the observed data exactly,3 then so will

target(A,B,C) :- make_term(B,A,D), weighted_sum(0,1,D,C).

Ideally, this symmetry should be removed to reduce the space that must
be searched. Symmetry also creates a problem in the construction of terms of
the form AnBm; using make term/4, there are 3 different ways to create A2B
based on permuting the order of As and Bs. The more arguments permitted
to make term and the larger the number of variables present, the greater this
problem becomes.

The approach adopted to remove this symmetry is to prevent two clauses
with the same meaning both being added to the bottom clause. This forces the
learner to only consider one of the many cases when searching for a solution.
Specifically, it is required that variable arguments to a make term/x predicate
are sorted in a non-decreasing order4.
2 Assuming that a more efficient method exists for finding the constants involved

than a brute-force search through their possible values. In the case of fitting the
functional forms mentioned in this paper, Gaussian Elimination [18] can used as
this more efficient algorithm.

3 i.e. C = AB.
4 Similar constraints apply to the term arguments of weighted sum/X. However, for

clarity, all the discussion will focus on make term/X.
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% Symmetry suppressing version for use in creating the bottom clause
make_term(v(X),v(Y),v(Z),t(A)):-
setting(stage,saturation),
X =< Y, Y =< Z,
A is X * Y * Z.

% Symmetry allowing version for use in searching
make_term(v(X),v(Y),v(Z),t(A)):-
\+ setting(stage,saturation),
A is X * Y * Z.

Fig. 3. Symmetry suppressing and allowing clauses for make term/4

Using this approach, only make term(A,B,C) can be added to the bottom
clause if A > B and only make term(B,A,C) if the reverse is true. This im-
mediately removes both sources of symmetry identified above. However, while
this property may apply to A and B in the example used to create the bottom
clause, it may not hold for other data in the set. Therefore, this requires split-
ting each background predicate into two: one is used when the bottom clause is
constructed and the other used during the search for testing the coverage of a
hypothesis. The first clause includes the ordering condition to suppress all but
one of the symmetric cases. In contrast, the second allows all the symmetric
cases to succeed. These pair of clauses are shown for make term/3 in fig. 3. Note
that setting(stage,saturation) is an internal Aleph predicate that succeeds
only when the bottom clause is under construction.

5 Results

Having identified weaknesses in a basic implementation of the loop bound learner
and having suggested how they may be addressed, it is necessary to assess the
extent to which the modified version overcomes the problems. In order to do this,
implementations of both versions were coded for use in Aleph (the simple version
being ported from an original implementation in Progol4.4 for fair comparison).

Three problems were chosen which serve to highlight the difference between
the learners well. Firstly, a relatively simple example of three loops nested in-
side each other for which there was no interaction between the loop counters.
Secondly, a nested loop structure featuring multiple constants without interac-
tion between loop counters, and finally, an example of the sorting routine nested
loops which has been mentioned extensively in this paper.

While benchmark suites do exist for WCET analysis, artificially generated
problems are used in preference here. There are multiple reasons for this decision.
The benchmark suites typically used are made of very simple functions and are
not representative of actual real-time code, which is itself unavailable due to
commercial confidentiality. Those benchmarks that do exist feature few functions
with interaction effects between counters of nested loops, and those which do are
no more complex than sort algorithms. Finally, as no existing techniques are able
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ABC Bottom Clause Learning Time (s)

Naive Learner 56 2.48
Reformulated Lazy Learner 1139 8.41
+ Symmetry Removal 118 0.70

100ABC+1 Bottom Clause Learning Time (s)

Naive Learner 88 N A
Reformulated Lazy Learner 1139 8.49
+ Symmetry Removal 118 0.73

A(A-1)/2 Bottom Clause Learning Time (s)

Naive Learner 99 1.26
Reformulated Lazy Learner 19 0.08
+ Symmetry Removal 11 0.03

Fig. 4. Number of literals in bottom clause and search time for different learners on
various problems

to automatically infer these loop bound relationships for interacting loops, there
is no data to compare our performance to.

For each loop’s structure, two pieces of information were recorded; the number
of literals in the bottom clause and the time taken to find the solution. Tests were
conducted with the original naive learner, with the reformulated lazy learner, and
with the reformulated lazy learner with the symmetry removal turned on. Each
learner received the same input data file, and was run in identical conditions.
Bottom clause sizes were obtained from one particular datum in each data set;
the datum being used for this purpose was the same for all learners.

Results of these experiments are shown in Fig 4. For all experiments, the
correct formula was always discovered by the learner.

For the simple nested loop, the results surprising show that the reformulated
learner has a larger bottom clause and search time. This counter-intuitive result
is actually due to the naive learner excluding some solutions that should be
considered potentially true from the solution space. This can be seen in the
second example, where 100ABC+1, which should rightly be in the search space,
is not found at all by the naive learner.

For the sorting style loop, it can be seen that reformulation actually reduces
the search space. This is because the number of functional forms that could be
created for this space, is actually smaller than the number of functions that the
naive leaner could return for a target with only a single parameter. The creation
of learner operating on functional forms is clearly superior here, even in the
absence of symmetry removal.

The effects of symmetry removal are evident throughout. Removing these
unproductive clauses has a massive effect both directly on the bottom clause
size and as a result on search time. While the reformulation and lazy learning
expands the search space to not exclude those candidate hypotheses wrongly
excluded by the naive learner, the symmetry reduction shrinks it down again.
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Fig. 5. Two bit prediction scheme

Crucially however, this is done while allowing a solution to always be found if
it would be found in the absence of the symmetry removal. The large reduction
in clause size and learning time illustrates the power and importance of this
technique.

6 Related Work - ILP for Branch Prediction

The applicability of ILP in RTS is not limited to the loop bound learning task,
and has also previously been tested on the problem of branch prediction analy-
sis [19].

Modern pipelined microprocessors combine the approach of out-of-order exe-
cution with branch prediction and speculative execution to try to alleviate the
problem of disrupting the instruction flow into the pipeline due to branches. A
simple, but commonly used, dynamic branch prediction technique is an n-bit
branch predictor [20] that uses the behaviour of the branch at its previous exe-
cutions to predict its behaviour on the next occurrence. An n-bit predictor can
be visualised as a finite state automaton (FSA) containing 2n states. Each state
predicts whether the branch will be taken or not at the next observation, and has
deterministic transitions to other states based on the actual observed behaviour.
An example of a two bit predictor is shown in Fig. 5. Common alternative branch
prediction schemes include zero bit and one bit prediction.

While older processors have their branch prediction strategy well documented,
for modern processors these details are normally commercially confidential.
Without this information, WCET analysis must make conservative assumptions
and produces unnecessarily pessimistic esimates. Bate and Kazakov [19] applied
ILP learning to determine the type of branch predictor used by a processor.
Test cases were produced for three configurations of hardware – zero bit, one
bit and two bit predictors. The results of these executions were then fed into
the learning engine. For each of the test cases the type of branch predictor was
correctly learned. Processing was of the order of tens of seconds, an acceptable
time for this type of task.

While this work demonstrates definite progress on an aspect of WCET anal-
ysis, it suffers from one major drawback. In the published work, the branch
predictor is simply chosen from one of several common types. In contrast, at
the forefront of chip design, branch predictors are becoming available based on
novel prediction schemes. It is details of precisely these chips that are most
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likely to be commercially confidential. One possible approach is to assume the
general task of identifying a finite state automaton with an unknown number of
states, choice of initial state and transitions. While the background knowledge
may not be difficult to describe, the task at this level appears very hard in the
general case. A possible way ahead is to study the known existing variations in
the realm of branch predictor design and encode building blocks from which the
target automaton is likely to be built.

7 Conclusion

This paper has presented an application of ILP for solving a particular problem
in the area of Real-Time Systems. Specifically, the issue of determining the
Worst Case Execution Time of a piece of code has been considered. A particular
aspect of this problem was tackled; the question of determining the number of
executions of a loop body.

Having demonstrated the potential of the technique, a much improved learner
was implemented. Using more advanced ILP techniques, it was possible to vastly
expand the range of loops for which the number of executions could be learned.
Furthermore, the implemented techniques reduced the time needed to learn the
loop count substantially.

The results showed that it was possible to accurately achieve bounds for nested
loops in which the outer loop counter effected the range of the inner counter.
This goes beyond what can be achieved by other existing WCET techniques.

Building on the work presented here, it should be possible to apply ILP to
other areas of WCET analysis. In addition to the use of ILP for determining
facts about program flow, related work was also shown in which ILP could be
used to determine features of the hardware used to execute the code. There are
many open issues in this area of WCET analysis, including the simulation of
caches and out-of-order pipelines.
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Abstract. Markov Logic Networks (MLNs) combine Markov networks
and first-order logic by attaching weights to first-order formulas and
viewing these as templates for features of Markov networks. Learning
the structure of MLNs is performed by state-of-the-art methods by max-
imizing the likelihood of a relational database. This can lead to subop-
timal results given prediction tasks. On the other hand better results
in prediction problems have been achieved by discriminative learning of
MLNs weights given a certain structure. In this paper we propose an
algorithm for learning the structure of MLNs discriminatively by max-
imimizing the conditional likelihood of the query predicates instead of
the joint likelihood of all predicates. The algorithm chooses the struc-
tures by maximizing conditional likelihood and sets the parameters by
maximum likelihood. Experiments in two real-world domains show that
the proposed algorithm improves over the state-of-the-art discriminative
weight learning algorithm for MLNs in terms of conditional likelihood.
We also compare the proposed algorithm with the state-of-the-art gen-
erative structure learning algorithm for MLNs and confirm the results in
[22] showing that for small datasets the generative algorithm is compet-
itive, while for larger datasets the discriminative algorithm outperfoms
the generative one.

1 Introduction

Many real-world application domains are characterized by both uncertainty and
complex relational structure. Statistical learning focuses on the former, and rela-
tional learning on the latter. Probabilistic Inductive Logic Programming (PILP)
[7] or Statistical Relational Learning [10] aim at combining the power of both.
PILP and SRL can be viewed as combining ILP principles (such as refinement
operators) with statistical learning. One of the representation formalisms in this
area is Markov Logic which subsumes both finite first-order logic and probabilis-
tic graphical models as special cases [30]. Upon this formalism, Markov Logic
Networks (MLNs) can be built serving as templates for constructing Markov Net-
works (MNs). In Markov Logic a weight is attached to each clause and learning
an MLN consists in structure learning (learning the clauses) and weight learning
(setting the weight of each clause).

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 59–76, 2008.
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In [30] structure learning was performed through CLAUDIEN [6] followed
by a weight learning phase in which maximum pseudo-likelihood [1] weights
were learned for each clause. In [14] structure is learned in a single phase using
weighted pseudo-likelihood as the evaluation measure in a beam search. The
algorithm performs systematic greedy search being therefore very suscetible to
local optima. The state-of-the-art algorithm for generative structure learning
is that in [24] which follows a bottom-up approach trying to consider fewer
candidates for evaluation. This algorithm uses a propositional Markov network
learning method to construct template networks that guide the construction of
candidate clauses. In this way, it generates fewer clauses for evaluation.

Generative approches optimize the joint distribution of all the variables. This
can lead to suboptimal results for predictive tasks because of the mismatch be-
tween the objective function used (likelihood or a function thereof) and the goal
of classication (maximizing accuracy or conditional likelihood). In contrast dis-
criminative approaches maximize the conditional likelihood of a set of outputs
given a set of inputs [16] and this often produces better results for prediction
problems. In [31] the voted perceptron based algorithm for discriminative weight
learning of MLNs was shown to greatly outperform maximum-likelihood and
pseudo-likelihood approches for two real-world prediction problems. Recently,
the algorithm in [21], outperforming the voted perceptron became the state-
of-the-art method for discriminative weight learning of MLNs. However, both
discriminative approches to MLNs learn weights for a fixed structure, given by
a domain expert or learned through another structure learning method (usually
generative). Better results could be achieved if the structure could be learned
in a discriminative fashion. Unfortunately, the computational cost of optimizing
structure and parameters for conditional likelihood is prohibitive. In this paper
we show that the simple approximation of choosing structures by maximizing
conditional likelihood while setting parameters by maximum likelihood can pro-
duce better results in terms of predictive accuracy. Structures are scored through
a very fast inference algorithm MC-SAT [27] whose lazy version Lazy-MC-SAT
[28] greatly reduces memory requirements, while parameters are learned through
a quasi-Newton optimization method like L-BFGS that has been found to be
much faster [34] than iterative scaling initially used for Markov Networks’ weight
learning [5]. We show through experiments in two real-world domains that the
proposed algorithm improves over the state-of-the-art algorithm of [21] in terms
of conditional likelihood of the query predicates.

Discriminative approaches may not always provide the highest classification
accuracy. An empirical and theoretical comparison of discriminative and gener-
ative classifiers (logistic regression and Näıve Bayes (NB)) is given in [22]. It is
shown that for small sample sizes the generative NB classier can outperform a
discriminatively trained model. This is consistent with the fact that, for the same
representation, discriminative training has lower bias and higher variance than
generative training, and the variance term dominates at small sample sizes [8,9].
For the dataset sizes typically found in practice, however, the results in [12,22,11]
all support the choice of discriminative training. An experimental comparison of
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discriminative and generative parameter training on both discriminatively and
generatively structured Bayesian Network classifiers has been performed in [25].
In this paper we perform an experimental comparison between generative and
discriminative structure learning algorithms for MLNs and confirm the results
in [22] in the case of MLNs by showing that on a small dataset the generative
algorithm is competitive, while on a larger dataset the discriminative algorithm
outperforms the generative one in terms of conditional likelihood.

The paper is organized as follows: in Section 2 we introduce MNs and MLNs, in
Section 3 we describe existing generative structure learning and discriminative
weight learning approaches for MLNs, Section 4 introduces the iterated local
search metaheuristic, Section 5 describes a discriminative algorithm for MLNs
structure learning, Section 6 presents the experiments, Section 7 describes related
work and we conclude in Section 8;

2 Markov Networks and Markov Logic Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1,X2,. . . ,Xn) ∈ χ [5]. It is composed
of an undirected graph G and a set of potential functions. The graph has a
node for each variable, and the model has a potential function φk for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by:

P (X = x) =
1
Z

∏
k

φk(x{k})

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by:

Z =
∑
x∈χ

∏
k

φk(x{k})

Markov networks are often conveniently represented as log-linear models, with
each clique potential replaced by an exponentiated weighted sum of features of
the state, leading to:

P (X = x) =
1
Z

exp(
∑

j

wjfj(x))

A feature may be any real-valued function of the state. We will focus on
binary features, fj ∈ {0, 1}. In the most direct translation from the potential-
function form, there is one feature corresponding to each possible state xk of each
clique, with its weight being log(φ(x{k}). This representation is exponential in
the size of the cliques. However a much smaller number of features (e.g., logical
functions of the state of the clique) can be specified, allowing for a more compact
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representation than the potential-function form, particularly when large cliques
are present. MLNs take advantage of this.

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic
idea in Markov logic is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
that reflects how strong a constraint it is: the higher the weight, the greater the
difference in log probability between a world that satisfies the formula and one
that does not, other things being equal.

A Markov logic network [30] L is a set of pairs (Fi; wi), where Fi is a formula
in first-order logic and wi is a real number. Together with a finite set of constants
C = {c1, c2, . . . , cp} it defines a Markov network ML;C as follows:

1. ML;C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true, and 0
otherwise.

2. ML;C contains one feature for each possible grounding of each formula Fi in
L. The value of this feature is 1 if the ground formula is true, and 0 otherwise.
The weight of the feature is the wi associated with Fi in L. Thus there is an
edge between two nodes of ML;C iff the corresponding ground predicates appear
together in at least one grounding of one formula in L. An MLN can be viewed
as a template for constructing Markov networks. The probability distribution
over possible worlds x specified by the ground Markov network ML;C is given by

P (X = x) =
1
Z

exp(
F∑

i=1

wini(x))

where F is the number of formulas in the MLN and ni(x) is the number of
true groundings of Fi in x. As formula weights increase, an MLN increasingly
resembles a purely logical KB, becoming equivalent to one in the limit of all
infinite weights.

In this paper we focus on MLNs whose formulas are function-free clauses and
assume domain closure (it has been proven that no expressiveness is lost), ensur-
ing that the Markov networks generated are finite. In this case, the groundings
of a formula are formed simply by replacing its variables with constants in all
possible ways.

3 Structure and Parameter Learning of MLNs

3.1 Generative Structure Learning of MLNs

One of the approaches for learning Markov Network weights is iterative scaling
[5]. However, maximizing the likelihood (or posterior) using a quasi-Newton
optimization method like L-BFGS has recently been found to be much faster
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[34]. Regarding structure learning, the authors in [5] induce conjunctive features
by starting with a set of atomic features (the original variables), conjoining each
current feature with each atomic feature, adding to the network the conjunction
that most increases likelihood, and repeating. The work in [23] extends this to
the case of conditional random fields, which are Markov networks trained to
maximize the conditional likelihood of a set of outputs given a set of inputs.

The first attempt to learn MLNs was that in [30], where the authors used
CLAUDIEN [6] to learn the clauses of MLNs and then learned the weights by
maximizing pseudo-likelihood. In [14] another method was proposed that com-
bines ideas from ILP and feature induction of Markov networks. This algorithm,
that performs a beam or shortest first search in the space of clauses guided
by a weighted pseudo-log-likelihood (WPLL) measure [1], outperformed that of
[30]. Recently, in [24] a bottom-up approach was proposed in order to reduce
the search space. This algorithm uses a propositional Markov network learning
method to construct template networks that guide the construction of candidate
clauses. In this way, it generates fewer candidates for evaluation. For every can-
didate structure, in both [14,24] the parameters that optimize the WPLL are
set through L-BFGS that approximates the second-derivative of the WPLL by
keeping a running finite-sized window of previous first-derivatives.

3.2 Discriminative Parameter Learning of MLNs

Learning MLNs in a discriminative fashion has produced for predictive tasks
much better results than generative approaches as the results in [31] show. In
this work the voted-perceptron algorithm was generalized to arbitrary MLNs
by replacing the Viterbi algorithm with a weighted satisfiability solver. The
new algorithm is essentially gradient descent with an MPE approximation to
the expected sufficient statistics (true clause counts) and these can vary widely
between clauses, causing the learning problem to be highly ill-conditioned, and
making gradient descent very slow. In [21] a preconditioned scaled conjugate
gradient approach is shown to outperform the algorithm in [31] in terms of
learning time and prediction accuracy. This algorithm is based on the scaled
conjugate gradient method and very good results are obtained with a simple
approach: per-weight learning weights, with the weight’s learning rate being
the global one divided by the corresponding clause’s empirical number of true
groundings.

However, for both these algorithms the structure is supposed to be given by an
expert or learned previously and they focus only on the parameter learning task.
This can lead to suboptimal results if the clauses given by an expert do not cap-
ture the essential dependencies in the domain in order to improve classification
accuracy. On the other side, since to the best of our knowledge, no attempt has
been made to learn the structure of MLNs discriminatively, the clauses learned
by generative structure learning algorithms tend to optimize the joint distri-
bution of all the variables and applying discriminative weight learning after the
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structure has been learned generatively may lead to suboptimal results since the
initial goal of the learned structure was not to discriminate query predicates.

4 Iterated Local Search

Many widely known and high-performance local search algorithms make use of
randomized choice in generating or selecting candidate solutions for a given com-
binatorial problem instance. These algorithms are called stochastic local search
(SLS) algorithms [13] and represent one of the most successful and widely used
approaches for solving hard combinatorial problem. Many “simple” SLS methods
come from other search methods by just randomizing the selection of the can-
didates during search, such as Randomized Iterative Improvement (RII), Uni-
formed Random Walk, etc. Many other SLS methods combine “simple” SLS
methods to exploit the abilities of each of these during search. These are known
as Hybrid SLS methods [13]. ILS is one of these metaheuristics because it can
be easily combined with other SLS methods.

One of the simplest and most intuitive ideas for addressing the fundamental
issue of escaping local optima is to use two types of SLS steps: one for reaching
local optima as efficiently as possible, and the other for effectively escaping local
optima. ILS methods [13,20] exploit this key idea, and essentially use two types
of search steps alternatingly to perform a walk in the space of local optima
w.r.t the given evaluation function. The algorithm works as follows: The search
process starts from a randomly selected element of the search space. From this
initial candidate solution, a locally optimal solution is obtained by applying
a subsidiary local search procedure. Then each iteration step of the algorithm
consists of three major steps: first a perturbation method is applied to the current
candidate solution s ; this yields a modified candidate solution s’ from which in
the next step a subsidiary local search is performed until a local optimum s”
is obtained. In the last third step, an acceptance criterion is used to decide
from which of the two local optima s or s’ the search process is continued. The
algorithm can terminate after some steps have not produced improvement or
simply after a certain number of steps. The choice of the components of the ILS
has a great impact on the performance of the algorithm.

In general, it is not straightforward to decide whether to use a systematic or
SLS algorithm in a certain task. Systematic and SLS algorithms can be consid-
ered complementary to each other. SLS algorithms are advantageous in many
situations, particularly if reasonably good solutions are required within a short
time, if parallel processing is used and if knowledge about the problem domain
is rather limited. In other cases, when time constraints are less important and
some knowledge about the problem domain can be exploited, systematic search
may be a better choice. Structure learning of MLNs is a hard optimization prob-
lem due to the large space to be explored, thus SLS methods are suitable for
finding solutions of high quality in short time. Moreover, one of the key ad-
vantages of SLS methods is that they can greatly speed up learning through
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parallel processing, where speedups proportional to the number of CPUs can be
achieved [13].

5 Discriminative Structure Learning of MLNs

In this section we describe our proposal for tailoring ILS metaheuristic to the
problem of learning the structure of MLNs and describe how weights are set
and how structures are scored. The approach we follow is similar to [12] where
Bayesian Networks were learned by setting weights through maximum likelihood
and choosing structures by maximizing conditional likelihood.

5.1 Search Strategy

Algorithm 1 (Discriminative Structure Learning - DSL) iteratively adds the best
clause to the current MLN until two consecutive steps have not produced im-
provement (however other stopping criteria could be applied). It can start from
an empty network or from an existing KB. Like in [30,14] we add all unit clauses
(single predicates) to the MLN. The initial weights are learned in LearnWeights
through L-BFGS and the initial structure is scored in ComputeCLL through MC-
SAT. The search for the best clause is performed in SearchBestClause described
by Algorithm 2. The algorithm performs an iterated local search to find the best
clause to add to the MLN. It starts by randomly choosing a unit clause CLC in
the search space. Then it performs a greedy local search to efficiently reach a lo-
cal optimum CLS . At this point, a perturbation method is applied leading to the
neighbor CL′

C of CLS and then a greedy local search is applied to CL′
C to reach

another local optimum CL′
S . The accept function decides whether the search

must continue from the previous local optimum CLC or from the last found
local optimum CL′

S (accept can perform random walk or iterative improvement
in the space of local optima).

Careful choice of the various components of Algorithm 2 is important to
achieve high performance. The clause perturbation operator (flipping the sign of
literals, removing literals or adding literals) has the goal to jump in a different
region of the search space where search should start with the next iteration.
There can be strong or weak perturbations which means that if the jump in
the search space is near to the current local optimum the subsidiary local search
procedure LocalSearchII (Algorithm 3) may fall again in the same local optimum
and enter regions with the same value of the objective function called plateau,
but if the jump is too far, LocalSearchII may take too many steps to reach an-
other good solution. In our algorithm we use only strong perturbations, i.e., we
always re-start from unit clauses (in future work we intend to dynamically adapt
the nature of the perturbation). Regarding the procedure LocalSearchII , we de-
cided to use an iterative improvement approach (the walk probability is set to
zero and the best clause is always chosen in stepII) in order to balance intensifi-
cation (greedily increase solution quality by exploiting the evaluation function)
and diversification (randomness induced by strong perturbation to avoid search
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Algorithm 1. Discriminative Structure Learning
Input: P:set of predicates, MLN:Markov Logic Network, RDB:Relational Database
CLS = All clauses in MLN ∪ P;
LearnWeights(MLN,RDB);
BestScore = ComputeCLL(MLN,RDB);
repeat

BestClause = SearchBestClause(P,MLN,BestScore,CLS,RDB);
if BestClause �= null then

Add BestClause to MLN;
BestScore = ComputeCLL(MLN,RDB);

end if
until BestClause = null for two consecutive steps
return MLN

stagnation). In future work we intend to further weaken intensification by using
a higher walk probability. Finally, the accept function always accepts the best
solution found so far.

5.2 Setting Parameters through Maximum Likelihood

For every candidate structure, the parameters that optimize the WPLL are set
through L-BFGS. As pointed out in [14] a potentially serious problem that arises
when evaluating candidate clauses using WPLL is that the optimal (maximum
WPLL) weights need to be computed for each candidate. Since this involves
numerical optimization, and needs to be done millions of times, it could easily
make the algorithm too slow. In [23,5] the problem is addressed by assuming
that the weights of previous features do not change when testing a new one.
Surprisingly, the authors in [14] found this to be unnecessary if the very simple
approach of initializing L-BFGS with the current weights (and zero weight for
a new clause) is used. Although in principle all weights could change as the
result of introducing or modifying a clause, in practice this is very rare. Second-
order, quadratic-convergence methods like L-BFGS are known to be very fast if
started near the optimum [34]. This is what happened in [14]: L-BFGS typically
converges in just a few iterations, sometimes one. We use the same approach for
setting the parameters that optimize the WPLL.

5.3 Efficient Structure Scoring

In order to score MLN structures, we need to perform inference over the network.
A very fast algorithm for inference in MLNs is MC-SAT [27]. Since probabilistic
inference methods like MCMC or belief propagation tend to give poor results
when deterministic or near-deterministic dependencies are present, and logical
ones like satisfiability testing are inapplicable to probabilistic dependencies, MC-
SAT combines ideas from both MCMC and satisfiability to handle probabilistic,
deterministic and near-deterministic dependencies that are typical of statistical
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Algorithm 2. SearchBestClause
Input: P: set of predicates, MLN: Markov Logic Network, BestScore: current best
score, CLS: List of clauses, RDB: Relational Database)
CLC = Random Pick a clause in CLS ∪ P;
CLS = LocalSearchII (CLS);
BestClause = CLS ;
repeat

CL’C = Perturb(CLS);
CL’S = LocalSearchII (CL’C ,MLN,BestScore);
if ComputeCLL(BestClause,MLN,RDB) ≤ ComputeCLL(CL’S ,MLN,RDB)
then

BestClause = CL’S ;
Add BestClause to MLN;
BestScore = ComputeCLL(CL’S ,MLN,RDB)

end if
CLS = accept(CLS ,CL’S);

until two consecutive steps have not produced improvement
Return BestClause

relational learning. MC-SAT was shown to greatly outperform Gibbs sampling
and simulated tempering in two real-world datasets regarding entity resolution
and collective classification.

Even though MC-SAT is a very fast inference algorithm, scoring candidate
structures at each step can be potentially very expensive since inference has
to be performed for each candidate clause added to the current structure. One
problem that arises is that fully instantiating a finite first-order theory requires
memory in the order of the number of constants raised to the length of the
clauses, which signicantly limits the size of domains where the problem can still
be tractable. To avoid this problem, we used a lazy version of MC-SAT, Lazy-
MC-SAT [28] which reduces memory and time by orders of magnitude compared
to MC-SAT. Before Lazy-MC-SAT was introduced, the LazySat algorithm [33]
was shown to greatly reduce memory requirements by exploiting the sparseness
of relational domains (i.e., only a small fraction of ground atoms are true, and
most clauses are trivially satisfied). The authors in [28] generalize the ideas in
[33] by proposing a general method for applying lazy inference to a broad class
of algorithms such as other SAT solvers or MCMC methods. Another problem is
that even though Lazy-MC-SAT makes memory requirements tractable, it can
take too much time to construct the Markov random field in the first step of
MC-SAT for every candidate structure.

To make the execution of Lazy-MC-SAT tractable for every candidate struc-
ture, we use the following simple heuristics: 1) We score through Lazy-MC-SAT
only those candidates that produce an improvement in WPLL. Once the parame-
ters are set through L-BFGS, it is straightforward to compute the gain in WPLL
for each candidate. This reduces the number of candidates to be scored through
Lazy-MC-SAT for a gain in CLL. 2) We pose a memory limit for Lazy-MC-SAT
on the clause activation phase and this greatly speeds up the whole inference
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Algorithm 3. LocalSearchII

Input: (CLC : current clause)
wp: walk probability, the probability of performing an improvement step or a
random step
repeat

NBHD = Neighborhood of CLC constructed using the clause construction opera-
tors;
CLS = StepRII (CLC ,NBHD,wp);
CLC = CLS ;

until two consecutive steps do not produce improvement
Return CLS ;

StepRII(CLC ,NBHD,wp)
U = random(]0,1]); random number using a Uniform Probability Distribution
if (U ≤ wp) then

CLS = stepURW (CLC ,NBHD)
Uninformed Random Walk: randomly choose a neighbor from NBHD

else
CLS = stepII(CLC ,NBHD)
Iterative Improvement: choose the best among the improving neighbours in NBHD.
If there is no improving neighbor choose the minimally worsening one

end if
Return CLS

task. Although in principle this limit can reduce the accuracy of inference, we
found that in most cases the memory limit is never reached making the overall
inference task very fast. 3) We pose a time limit in the clause activation phase
in order to avoid those rare cases where the step takes a very long time to be
completed. For most candidate structures such a time limit is never reached and
for those rare cases where time limit is reached, inference is performed using the
activated clauses within the limit.

We found that these simple approximations greatly speed up the scoring of
each structure at each step. Filtering the potential candidates through the gain
in WPLL can in principle exclude good candidates due to the mismatch between
the optimization of WPLL and that of CLL. However, we empirically found that
most candidates not improving WPLL, did not improve CLL. Further investi-
gation on this issue may help to select better or more candidates to be scored
through Lazy-MC-SAT.

6 Experiments

Through experimental evaluation we want to answer the following questions:

(Q1) Is the DSL algorithm competitive with state-of-the-art discriminative
training algorithms of MLNs?

(Q2) Is the DSL algorithm competitive with the state-of-the-art generative
algorithm for structure learning of MLNs?
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(Q3) Is the DSL algorithm competitive with pure probabilistic approaches
such as Näıve Bayes and Bayesian Networks?

(Q4) Is the DSL algorithm competitive with state-of-the-art ILP systems for
the task of structure learning of MLNs?

(Q5) Does the DSL algorithm always perform better than BUSL for classi-
fication tasks? If not, are there any regimes in which each algorithm performs
better?

Regarding question (Q1) we have to compare DSL with Preconditioned Scaled
Conjugate Gradient (PSCG), the state-of-the-art discriminative training algo-
rithm for MLNs proposed in [21]. It must be noted that this algorithm takes
in input a fixed structure, and with the clausal knowledge base we use in our
experiments for Cora (each dataset comes with a hand-coded knowledge base),
PSCG has achieved the best published results. We also exclude the approach of
adapting the rule set and then learning weights with PSCG, since it would be
computationally very expensive.

To answer question (Q2) we have to perform experimental comparison with
the Bottom-Up Structure Learning (BUSL) algorithm [24] which is the state-of-
the-art algorithm for this task. Since in principle, the MLNs structure can be
learned using any ILP technique it would be interesting to know how the DSL
compares to ILP approaches. In [14], the proposed algorithm based on beam
search (BS) was shown to outperform FOIL and the state-of-the-art ILP system
Aleph for the task of learning MLNs structure. Moreover, BS outperformed both
Näıve Bayes and Bayesian Networks in terms of CLL and AUC. Since in [24]
was shown that BUSL outperforms the BS algorithm of [14], our baseline for
questions (Q2), (Q3) and (Q4) is again BUSL. Regarding question (Q5), we
compare DSL and BUSL on two datasets with the goal of discovering regimes in
which each one can perform better. We will use two datasets, one of which can
be considered of small size and the other one of much larger size.

6.1 Datasets

We carried out experiments on two publicly-available databases: the UW-CSE
database (available at http://alchemy.cs.washington.edu/data/uw-cse) used by
[14,30,24] and the Cora dataset originally labeled by Andrew McCallum. Both
represent standard relational datasets and are used for two important relational
tasks: Cora for entity resolution and UW-CSE for social network analysis. For
Cora we used a cleaned version from [32], with five splits for cross-validation.

The published UW-CSE dataset consists of 15 predicates divided into 10 types.
Types include: publication, person, course, etc. Predicates include: Student
(person), Professor(person), AdvisedBy(person1, person2),TaughtBy(course,
person, quarter), Publication (paper, person) etc. The dataset contains a total of
2673 tuples (true ground atoms, with the remainder assumed false). We used the
hand-coded knowledge base provided with it, which includes 94 formulas stating
regularities like: each student has at most one advisor; if a student is an author
of a paper, so is her advisor; etc. Notice that these statements are not always true,
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but are typically true. The task is to predict who is whose advisor from informa-
tion about coauthorships, classes taught, etc. More precisely, the query atoms are
all groundings of AdvisedBy(person1, person2), and the evidence atoms are all
groundings of all other predicates except Student(person) and Professor(person),
corresponding to the Partial Information scenario in [30].

The Cora dataset consists of 1295 citations of 132 different computer science
papers, drawn from the Cora Computer Science Research Paper Engine. The
task is to predict which citations refer to the same paper, given the words in
their author, title, and venue fields. The labeled data also specify which pairs of
author, title, and venue fields refer to the same entities. We performed experi-
ments for each field in order to evaluate the ability of the model to deduplicate
fields as well as citations. Since the number of possible equivalences is very large,
like the authors did in [21] we used the canopies found in [32] to make this prob-
lem tractable. The dataset contains a total of 70367 tuples (true and false ground
atoms, with the remainder assumed false).

6.2 Systems and Methodology

We implemented the DSL algorithm in the Alchemy package [15]. We used the
implementation of L-BFGS and Lazy-MC-SAT in Alchemy to learn maximum
WPLL weights and compute CLL during clause search.

Regarding parameter learning, we compared our algorithm performance with
the state-of-the-art algorithm PSCG of [21] for discriminative weight learning
of MLNs. This algorithm takes as input an MLN and the evidence (groundings
of non-query predicates) and discriminatively trains the MLN to optimize the
CLL of the query predicates given evidence. DSL and PSCG both optimize the
CLL of the query predicates and a comparison between these algorithms would
be useful to understand if learning automatically the clauses from scratch can
improve over hand-coded MLN structures in terms of classification accuracy of
the query predicates given evidence. We performed all the experiments on a 2.13
GHz Intel Core2 Duo CPU. For the UW-CSE dataset we trained PSCG on the
hand-coded knowledge base provided with the dataset. We used the implemen-
tation of PSCG in the Alchemy package and ran this algorithm with the default
parameters for 10 hours. For the Cora dataset, for PSCG we report the results
obtained in [21]. For both datasets, for the DSL algorithm we used the following
parameters: The mean and variance of the Gaussian prior were set to 0 and 100,
respectively; maximum variables per clause = 4; maximum predicates per clause
= 4; penalization of weighted pseudo-likelihood = 0.01 for UW-CSE and 0.001
for Cora. For L-BFGS we used the following parameters: maximum iterations
= 10,000 (tight) and 10 (loose); convergence threshold = 10−5 (tight) and 10−4

(loose). For Lazy-MC-SAT during learning we used the following parameters:
memory limit = 200MB, maximum number of steps for Gibbs sampling = 100,
simulated annealing temperature = 0.5.

Regarding BUSL, for both datasets, we used the following parameters: The
mean and variance of the Gaussian prior were set to 0 and 100, respectively; max-
imum variables per clause: 5 for UW-CSE and 6 for Cora; maximum
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predicates per clause = 6; penalization of WPLL: 0.01 for UW-CSE and 0.001
for Cora. minWeight 0.5 for UW-CSE and 0.01 for Cora; For L-BFGS we used
the following parameters: maximum iterations = 10,000 (tight) and 10 (loose);
convergence threshold = 10−5 (tight) and 10−4 (loose).

In the UW-CSE domain, we used the same leave-one-area-out methodology
as in [30]. In the Cora domain, we performed 5-fold cross-validation. For each
train/test split, one of the training folds is used as tuning set for computing
the CLL. For each system on each test set, we measured the CLL and the area
under the precision-recall curve (AUC) for the query predicates. The advantage
of the CLL is that it directly measures the quality of the probability estimates
produced. The advantage of the AUC is that it is insensitive to the large number
of true negatives (i.e., ground atoms that are false and predicted to be false).
The CLL of a query predicate is the average over all its groundings of the ground
atoms log-probability given evidence. The precision-recall curve for a predicate is
computed by varying the CLL threshold above which a ground atom is predicted
to be true; i.e. the predicates whose probability of being true is greater than the
threshold are positive and the rest are negative. For the computation of AUC
we used the package of [3].

It must be noted also that since the goal of the experimental study was to
verify that DSL is competitive to other state-of-the-art techniques, and not to
boost performance, we did not try to optimize any parameter.

6.3 Results

After learning the structure discriminatively, we performed inference on the test
fold for both datasets by using MC-SAT with number of steps = 10000 and
simulated annealing temperature = 0.5. For each experiment, on the test fold
all the groundings of the query predicates were commented: advisedBy for the
UW-CSE dataset (professor and student are also commented) and sameBib,
sameTitle, sameAuthor and sameVenue for Cora. MC-SAT produces probability
outputs for every grounding of the query predicate on the test fold. We used
these values to compute the average CLL over all the groundings.

The results for all algorithms on the UW-CSE dataset are reported in Table
1 where CLL is averaged over all the groundings of the predicate advisedBy in
the test fold. Regarding DSL and PSCG, in this domain DSL performs better in
terms of CLL in all folds of the dataset and in two folds in terms of AUC. Overall,
DSL performs better in terms of CLL and worse in terms of AUC. For the Cora
dataset the results are reported in Table 2 where for each query predicate we
report the average of CLL of its groundings over the test fold (for each predicate,
training is performed on four folds and testing on the remaining one in a 5-fold
cross-validation). For Cora, DSL performs better in terms of CLL but worse in
terms of AUC for all the query predicates. We observed empirically on each fold
that the performances in terms of CLL and AUC were always balanced, a slightly
better performance in CLL always resulted in a slightly worse performance in
terms of AUC and vice versa. Since CLL determines the quality of the probability
predictions output by the algorithm, DSL outperforms PSCG in terms of the
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Table 1. Results for DSL, PSCG and BUSL for the query predicate advisedBy in the
UW-CSE domain

DSL PSCG BUSL
area CLL AUC CLL AUC CLL AUC

language -0.036±0.012 0.032 -0.049±0.016 0.011 -0.024±0.008 0.115
graphics -0.016±0.002 0.009 -0.023±0.005 0.005 -0.014±0.002 0.007
systems -0.021±0.004 0.023 -0.026±0.005 0.069 -0.295±0.000 0.007
theory -0.019±0.005 0.031 -0.028±0.007 0.101 -0.013±0.003 0.032

ai -0.021±0.002 0.014 -0.032±0.005 0.034 -0.019±0.003 0.013
Overall -0.023±0.005 0.022 -0.032±0.008 0.044 -0.073±0.003 0.035

Table 2. Results for DSL, PSCG and BUSL for all query predicates in the Cora domain

DSL PSCG BUSL
predicate CLL AUC CLL AUC CLL AUC
sameBib -0.116±0.001 0.495 -0.291±0.003 0.990 -0.566±0.001 0.138
sameTitle -0.076±0.005 0.430 -0.231±0.014 0.953 -0.100±0.004 0.419

sameAuthor -0.126±0.007 0.590 -0.182±0.013 0.999 -0.834±0.009 0.323
sameVenue -0.100±0.003 0.247 -0.444±0.012 0.823 -0.232±0.005 0.218

Overall -0.105±0.004 0.441 -0.287±0.000 0.941 -0.433±0.005 0.275

ability to predict correctly the query predicates given evidence. However, since
AUC is useful to predict the few positives in the data, PSCG produces better
results for only positive examples. Hence, these results answer question (Q1).
The worse performance of DSL in terms of AUC can be due to the approach
of DSL of optimizing the conditional likelihood during structure learning that
may lead to overfitting. This issue deserves further investigation. However, it
must be noted that PSCG has achieved the best published results on Cora in
terms of AUC [21]. Moreover, since we did not try to optimize parameters, it is
interesting to know if the results would change with a higher number of variables
and literals per clause. For DSL, we plan to perform more extensive experiments
with larger search parameters in order to boost performance.

Regarding DSL against BUSL, the results show that DSL performs better
than BUSL in terms of CLL on both datasets. It must be noted, however, that
for UW-CSE, BUSL performed generally better than DSL, but produced very
low results in one fold. In terms of AUC, BUSL performs slightly better on the
UW-CSE dataset while in the Cora dataset DSL outperforms BUSL. Therefore,
questions (Q2), (Q3) and (Q4) can be answered affirmatively. DSL is com-
petitive with BUSL even though for BUSL, in the UW-CSE domain, we used
optimized parameters taken from [24] in terms of number of variables and literals
per clause, while for DSL we did not optimize any parameter.

Regarding question (Q5), the goal was whether previous results of [22] carry
on to MLNs, that on small datasets generative approaches can perform better
than discriminative ones. The UW-CSE dataset with a total of 2673 tuples can
be considered of much smaller size compared to Cora that has 70367 tuples. The
results of Table 1 show that on the UW-CSE dataset, the generative algorithm
BUSL performs better in terms of AUC and is competitive in terms of CLL since
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it underperforms DSL only because of the low results in the systems fold of the
dataset. Thus we can answer question (Q5) confirming the results in [22] that
on small datasets generative approaches can perform better than discriminative
ones, while for larger datasets discriminative approches outperform generative
ones.

Finally, we give examples of clauses from MLN structures learned for both
datasets (we omit the relative weights). For the UW-CSE dataset examples of
learned clauses are:

advisedBy(a1 , a2 ) ∨ inPhase(a1 , a3 ) ∨ inPhase(a2 , a4 )

¬student(a1 ) ∨ position(a2 , a3 ) ∨ advisedBy(a1 , a2 )

These clauses model the relation advisedBy between students and professors.
In the first clause, a1 and a2 are variables that denote persons (students or
professors) and the predicate inPhase states for each of these persons the phase
of their university career. In the second clause, the predicate position relates the
person denoted by a2 (only professors have a position) to his university position.

For Cora, examples of learned clauses are the following:

sameAuthor(a1,a2) ∨ ¬hasWordAuthor(a1,a3) ∨ ¬hasWordAuthor(a2,a3) ∨
a1 = a2

¬title(a1 , a2 ) ∨ ¬title(a3 , a2 ) ∨ ¬sameBib(a3 , a1 )

In the first clause, a1 and a2 denote author fields while the predicate hasWor-
dAuthor relates author fields to words contained in these fields. In the second
rule the predicate title relates titles to their respective citations and the predicate
sameBib is true if both its arguments denote the same citation.

7 Related Work

Many works in the SRL or PILP area have addressed classification tasks. Our
discriminative method falls among those approaches that tightly integrate ILP
and statistical learning in a single step for structure learning. The earlier works in
this direction are those in [4,26] that employ statistical models such as maximum
entropy modeling in [4] and logistic regression in [26]. These approaches can be
computationally very expensive. A simpler approach that integrates FOIL [29]
and Näıve Bayes is nFOIL proposed in [17]. This approach interleaves the steps of
generating rules and scoring them through CLL. In another work [2] these steps
are coupled by scoring the clauses through the improvement in classification
accuracy. This algorithm incrementally builds a Bayes net during rule learning
and each candidate rule is introduced in the network and scored by whether it
improves the performance of the classifier. In a recent approach [19], the kFOIL
system integrates ILP and support vector learning. kFOIL constructs the feature
space by leveraging FOIL search for a set of relevant clauses. The search is
driven by the performance obtained by a support vector machine based on the
resulting kernel. The authors showed that kFOIL improves over nFOIL. Recently,
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in TFOIL [18], Tree Augmented Näıve Bayes, a generalization of Näıve Bayes
was integrated with FOIL and it was shown that TFOIL outperforms nFOIL.

The most closely related approach to the DSL algorithm is nFOIL (and TFOIL
as an extension) which is the first system in literature to tightly integrate fea-
ture construction and Näıve Bayes. Such a dynamic propositionalization was
shown to be superior compared to static propositionalization approaches that
use Näıve Bayes only to post-process the rule set. The approach is different from
ours in that nFOIL selects features and parameters that jointly optimize a prob-
abilistic score on the training set, while DSL maximizes the likelihood on the
training data but selects the clauses based on the tuning set. This approach is
similar to SAYU [2] that uses the tuning set to compute the score in terms of
classification accuracy or AUC, with the difference that DSL uses CLL as score
instead of AUC. Another difference with nFOIL and SAYU is that DSL, to per-
form inference for the computation of CLL, uses MC-SAT that is able to handle
probabilistic, deterministic and near-deterministic dependencies that are typical
of statistical relational learning. Moreover, the lazy version Lazy-MC-SAT re-
duces memory and time by orders of magnitude as the results in [28] show. This
makes it possible to apply the proposed algorithm to very large domains.

8 Conclusions and Future Work

Markov Logic Networks are a powerful representation that combines first-order
logic and probability by attaching weights to first-order formulas and viewing
these as templates for features of Markov networks. In this paper we have in-
troduced an algorithm that learns discriminatively first-order clauses and their
weights. The algorithm scores the candidate structures by maximizing condi-
tional likelihood while setting the parameters by maximum pseudo-likelihood.
Empirical evaluation with real-world data in two domains show the promise of
our approach improving over the state-of-the-art discriminative weight learning
algorithm for MLNs in terms of conditional log-likelihood of the query predi-
cates given evidence. We have also compared the proposed algorithm with the
state-of-the-art generative structure learning algorithm and shown that on small
datasets the generative approach is competitive, while on larger datasets the
discriminative approach outperforms the generative one.

Directions for future work include speeding up the counting of the number
of true groundings of a first-order clause which is the most expensive step for
parameters’ setting; learning the structure discriminatively and then applying a
weight learning algorithm such as PSCG; developing methods to avoid overfit-
ting; studying the relationship between the performance in terms of CLL and
AUC and try to improve the accuracy in predicting the positives; scoring struc-
tures through AUC instead of CLL; adapting dynamically the nature of pertur-
bation in the iterated local search procedure; performing more experiments with
optimized parameters regarding the number of variables and literals per clause;
finding heuristics to select, among clauses that do not improve WPLL, potential
candidates that can improve CLL.
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Abstract. We describe an experiment in the application of ILP to
autonomous discovery in a robotic domain. An autonomous robot is per-
forming experiments in its world, collecting data and formulating pre-
dictive theories about this world. In particular, we are interested in the
robot’s “gaining insights” through predicate invention. In the first ex-
perimental scenario in a pushing blocks domain, the robot discovers the
notion of objects’ movability. The second scenario is about discovering
the notion of obstacle. We describe experiments with a simulated robot,
as well as an experiment with a real robot when robot’s observations
contain noise.

1 Introduction

In this paper we describe an application of an ILP system Hyper [3] to a simple
robotic domain. The autonomous robot observes its environment which in our
experiments consisted of two movable and two non-movable boxes (Fig. 1). It can
perform experiments in this environment and collect data about its performed
actions and the resulting observations. Our goal is to provide the robot a learning
system that enables it to automatically discover new useful notions by exploring
the domain. This is also known as gaining insights about the domain.

Although there has not been a unique generally accepted definition of the no-
tion of insight, one definition that corresponds well to the present case study is
as follows. An insight is a new piece of knowledge that enables a simplification of
the robot’s current theory. A variant of this definition is: Insight is the discovery
of a new concept (e.g. in logic: the discovery of a new predicate) that enables
the formulation of a new theory using the current theory as background knowl-
edge and the observations as learning examples. This second definition precisely
corresponds to the insight in the presented experiments.

We present two scenarios in which the robot learns the notions of movability
and obstacle, respectively. In the movability scenario, where the robot’s task is
to push different objects, the robot discovers the notion of object’s movability
which helps it to explain the observations. In the obstacle scenario, the robot
is moving around in the environment and discovers the notion of an obstacle,
which helps to explain why in some cases it is not able to reach its desired goal
position.

Our approach tackles two interesting topics in ILP, namely the predicate
invention [12,13,10,2] and automatic generation of negative learning examples.

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 77–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Predicate invention is the induction of useful subconcepts that makes the final
theory shorter or learnable at all. The invented predicate is therefore usually
an interesting concept by itself – it is whether so common that appears often
in the final concept or it is so important that enables the target concept to be
learned at all. Predicate invention is used for gaining insights by discovering new
concepts. Automatic generation of negative learning examples is needed due to
our use of ILP system Hyper which is not enable to learn from positive examples
only [3].

For the purpose of our experiments, we extended Hyper by adding the ca-
pability of interpreting negated conditions in hypotheses as negation as failure.
Also, a new sound heuristic was added for efficiency reasons: never refine a clause
that is never used in the proof of any negative example. Any refinement of such
a clause is provably redundant.

The paper is organized as follows. First we describe the related work. We
then present how predicate invention can be done using ILP system Hyper and
describe different experiments we performed when learning two notions, namely
movability and obstacle. Next, we present a method for automatic generation
of negative examples using the positive examples. We finish with concluding
remarks on the factors, which in our opinion had the greatest impact on the
time needed to learn the notions.

2 Related Work

Automated discovery systems such as BACON [11], LIVE [17] and DIDO [16]
learn models by making experiments in their environment. Of these, only LIVE is
an autonomous system while other require human interaction. Klingspor, Morik
and Rieger have used ILP to tackle a problem similar to ours [7,9,14,15]. They
report several difficulties using ILP. First, they have to convert numerical values
to qualitative terms in order to use ILP at all. Another problem they face is a
large size of training data. Their algorithm, GRDT, uses grammars to restrict
the space of possible hypothesis in order to eliminate this problem. The greatest
challenge for them seems to be the construction of negative examples. Trying
to generate negative examples by the closed-world assumption they obtained
extremely large data set which their algorithm could not handle. They solved
the problem by implicitly applying the closed-world assumption through their
algorithm. As described in [9], they work only with simulated data and don’t
report handling of noise. They learn models separately in several levels of the
hierarchy of concepts. Rieger [15] is learning probabilistic automata in a similar
domain but without the obstacles. In the past few years, there has been a signif-
icant interest in relational representations for modeling and learning in robotic
domains. Relational reinforcement learning [6] and relational Markov decision
processes [8] are basic approaches that are, in robotic domains, mainly applied
in learning planning policies [20,4,5].
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Boström [2] discusses two topics that are relevant to our problem, namely
the predicate invention and learning from positive examples only. His system,
MERLIN 2.0, uses a technique for inducing Hidden Markov Models from positive
examples only [19]. Instead of minimizing the size of the automaton it maximizes
the posterior probability. In our approach, HYPER actually uses positive as well
as negative examples in the learning process and is in this respect conceptually
much different. On the other hand, it constructs negative examples from positive
ones automatically, so the input to the algorithm are positive examples only.

3 Predicate Invention Using Hyper

Learning definitions of relations in ILP can be, in machine learning terminology,
regarded as supervised learning. It is supervised in the sense that the learning
algorithm (ILP system) is given labeled examples (in ILP these correspond to
the positive and negative examples) and the result of learning is a model (a
hypothesis in the form of a predicate) that discriminates between positive and
negative examples. In order to be able to learn a definition of the target predicate,
we therefore have to be given some true and false examples of this predicate. For
example, in order to learn the notion of movability, we would have to provide
examples of movable and examples of unmovable objects.

The supervised way of learning is not suitable for the purpose of “gaining
insights” since we have to specify in advance which notion we want to learn
by providing positive and negative examples of the notion. Instead, we would
like the robot to automatically discover new useful notions by inventing new
predicates when they are needed. A notion can be considered as useful if it helps
the robot to explain its past observations and enables it to predict the results of
new actions.

In order to be able to learn new notions using Hyper, we represented the
learning problem in the following way. We defined the target predicate (the
predicate that we wish to learn) to be a predicate which specifies a command
that was given to the robot and the resulting state after executing this command.
For the movability notion, for example, the target predicate move(Obj, Start,
Dist, End) contains the command to the robot to move the object Obj from its
starting position Start by a specific distance Dist, and the object’s position End
after executing the command. The positive examples of such target predicate
can easily be created by storing the commands and their results while the robot
is exploring its environment. Automatic generation of negative examples using
the positive examples is discussed in Section 5.

Based on the definition of the target predicate, Hyper will search for a hypoth-
esis, possibly consisting of multiple clauses, that will explain the collected data.
In order to enable Hyper to discover new notions in the form of new predicates,
we add a new, auxiliary (yet unknown) predicate p to Hyper’s starting hypothe-
sis. This predicate will serve as a placeholder for the new notion. As an example,
consider the definition of the starting hypothesis for the movable notion:
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% A placeholder for the new predicate to be invented
start clause([p(Obj)] / [Obj:object]).
start clause([move(Obj, Start, Dist, End)]

/ [Obj:object, Start:position, Dist:position, End:position]).
start clause([move(Obj, Start, Dist, End)]

/ [Obj:object, Start:position, Dist:position, End:position]).

There are two empty move clauses in the starting hypothesis since one is
needed to describe examples where the robot pushes a movable object and an-
other for describing examples where it pushes an unmovable object. We also
have an empty clause for the predicate p. When generating possible hypotheses,
Hyper can try to add to all three clauses the predicates from the background
knowledge and the auxiliary predicate p. With these modifications, Hyper will
be able to automatically discover a new notion, represented by p, which will be,
if it is useful for the task, used in the target predicate move.

There is also a downside to the discovery of new notions using a placeholder
predicate. As for all starting clauses in Hyper, we have to specify p’s arguments
and their types in advance. Although principles for choosing the arguments for
the invented predicates exist [18], we manually specified the arguments and their
types in our experiments. For the movability scenario, for example, we specified
that the predicate p accepts one argument of type object.

4 Experiments

In this section we describe the experiments we performed when learning the
notions of movable and obstacle. We also provide the description of the relevant
background predicates and the form in which the data traces were collected. For
each experiment we report the time needed to find the correct hypothesis and the
number of the refined hypotheses during the search. The prolog implementation
that we used was SWI-Prolog.

In all experiments we used the following setting. The robot was placed in a
room large enough so that it never bumped into the walls during the experimen-
tation. In the room there were four objects – objects a and d were movable by
the robot, while the objects b and c were not. The starting position of the robot
and the objects is depicted in Figure 1.

To learn the notions we first used data collected using an XPERSim robot
simulator [1] and then repeated the learning using noisy data from a real robot.
All results presented here were obtained using the real robot data. The data that
was collected while executing the commands (robot’s sensory information and
the positions of the objects) was stored in the form of predicates at, contact, and
moving, which will be described in the next section. The amount of noise that
was present in the data was about 10% of the variable span.

4.1 Learning the Notion of Object Movability

One of the simplest notions that the robot might find useful in its interaction
with the world is the notion of object movability. In order for the robot to be
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Fig. 1. The robot in its environment consisting of two movable (objects a and d) and
two non-movable boxes (objects b and c)

able to discover such a notion, we set up the following experiment. We placed
a robot inside room with two movable and two unmovable objects. The robot
was then to execute several commands of the form “move the object Obj for
the distance Dist” (where Dist is a vector with x and y values). We expected
that the robot will in some cases be able to successfully move the object for the
desired distance, and in some cases the position of the object will not change
at all. Since it is the object’s movability, which determines whether its position
will change upon pushing or not, this would be a valuable concept to the robot
that would allow it to predict the results of its actions.

In order to learn the concept of movability we saved several robot’s commands
and their results in the form of a target predicate move(Obj, Start, Dist, End),
which states that the robot was supposed to move the object Obj from its Start
position by distance Dist and the command finished with the object being at
position End. The position and distance variables are vectors with real numbers.
We tried to discover this notion by providing the data traces in two ways - using
only allocentric (global) coordinates, and using allocentric coordinates together
with the robot’s sensory measurements. Using the robot’s sensory measurements,
we also performed an experiment with two robots, where one robot is stronger
and is able to move one object, which appears to be unmovable to the weaker
robot. We will now describe all three experiments in detail.

Notion of movability using global coordinates. In this experiment we
used an over-head camera which was able to track the position of each of the
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objects over time. The state of the world at different time points was therefore
completely described using facts in form of a predicate at(Ob, Time, Pos) which
states that the object Obj was at time Time at position Pos. The data trace that
we used contained about 450 at facts. The other background predicates that we
allowed Hyper to use were:

– approxEqual(Pos1, Pos2) – the predicate succeeds if position Pos1 is approx-
imately the same as position Pos2. The predicate is needed to take into
account the noise which is present in the data.

– add(Pos1, Dist, Pos2) – the predicate can be used in two ways. When Pos2
is uninstantiated (a variable), the predicate computes the sum of the posi-
tion Pos1 (which is a list with x and y coordinates) and distance Dist (also
in a form of a list with two values) and returns the result as the variable
Pos2. When Pos2 is instantiated then the predicate succeeds if Pos1 + Dist
approximately equals Pos2.

– different(Pos1, Pos2) – the predicate succeeds if the position Pos1 is not
approximately equal to position Pos2. This predicate is basically the negation
of the predicate approxEqual.

As already mentioned, the position and distance arguments, that are present
in the target and background predicates are vectors represented as lists contain-
ing two values. It is important to note that when specifying types of predicate
arguments, these arguments have to be of a special type (in our case we named
them position) and not as a list of two values of type number. For example, the
declaration of the background predicate at had to be:

backliteral( at(Obj, T, P), [ Obj:object], [ T:time, P:position]).

Declaring the predicate at (and similarly other predicates) like:

backliteral( at(Obj, T, [X,Y]), [ Obj:object], [T:time, X:number, Y:number]).

would force Hyper to introduce a larger number of new variables. As a result,
when searching for a correct hypothesis, Hyper would have to try to unify a
larger number of arguments which would cause a significant (and unnecessary)
increase of computational complexity.

Using the described target and background predicates Hyper induced the
following theory of moving in this world:

p(Obj) :–
at(Obj, T1, Pos1),
at(Obj, T2, Pos2),
different(Pos1, Pos2).

move(Obj, Start, Dist, End) :–
approxEqual(Start, End),
not p(Obj).

move(Obj, Start, Dist, End) :–
add(Start, Dist, End),
p(Obj).



An Experiment in Robot Discovery with ILP 83

We can see here that Hyper used the p predicate as a placeholder for inventing
the predicate movable. It defined object as movable if there exist two time points
at which the position of the object is different. All move commands that were
collected can then be explained in two ways:

1. the starting and ending positions of the object are approximately the same
and the object is unmovable, or

2. the object is movable and the starting position plus distance equals to the
end position of the object.

To find the solution Hyper needed 58 minutes on a Pentium PC 2.66 GHz
computer and in the process refined 25,241 hypotheses.

Notion of movability using global coordinates and sensory informa-
tion. In this experiment we used global coordinates only for storing the in-
formation on object’s coordinates in the positive examples. The data that we
collected while the robot was executing commands came from its sensors and we
stored it in the form of the following predicates:

– contact(Obj, Time, Val) – value Val can be 0 or 1 and describes whether the
robot was in contact with an object Obj at time Time.

– moving(Object, Time, Val) – value Val can be 0 or 1 and describes whether
the object Object was being moved at time Time.

– moving(Time, Val) – value Val can be 0 or 1 and describes whether the robot
was moving forward at time Time.

The additional background predicates were also the add and approxEqual pred-
icates that were already described in the previous experiment. The solution which
Hyper found in a few seconds was:

p(Obj) :–
moving(Obj, T, 1).

move(Obj, Start, Dist, End) :–
approxEqual(Start, End),
not p(Obj).

move(Obj, Start, Dist, End) :–
add(Start, Dist, End),
p(Obj).

We can see that Hyper found a short definition of movable without using
the contact predicate. The reason why the predicate moving/3 suffices is that
in this experiment the only time an object would be moving is when the robot
would be pushing it (whenever the last argument of predicate moving is 1, the
last argument of contact is also 1) which makes the contact predicate redundant.
Since we also wanted to find a more specific definition of movability, which would
state that the object is movable if it can be moved by the robot, we created
another experiment with two robots.
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Notion of movability using two robots. In this experiment we used two
robots, one slightly stronger than the other. There were still four objects (a,
b, c, and d). The robot r1 was able to move the object d, while the stronger
robot r2 was also able to move the object a. Because of two robots, the move
commands that were issued in this experiment contained as the first argument
the name of the robot that was ordered to execute the command. Both robots
were issued several move commands. The moving and contact predicates also had
to be modified and now contained the robot’s name as the first argument. The
solution that Hyper found in a few seconds was:

p(R, Obj) :–
moving(R, T, 1),
contact(R, Obj, T, 1).

move(R, Obj, Start, Dist, End) :–
approxEqual(Start, End),
not p(R, Obj).

move(R, Obj, Start, Dist, End) :–
add(Start, Dist, End),
p(R, Obj).

From this solution we see that the moving predicate is no longer sufficient to
determine the movability of the object. By this definition, the object is movable
by a robot if, while in contact with the object, the robot can still move forward.

4.2 Learning the Notion of an Obstacle

The second notion that we were very interested to learn was the notion of an
obstacle. An obstacle is an object, which impedes the robot’s progress on its
desired path and prevents it from reaching the goal position. Learning this notion
is very important for the robot since it enables it to predict in advance whether
a specific goal can be reached successfully or not and thus allowing it to create
an alternative plan.

In order to learn this concept we performed the following experiment. We
modified the commands to the robot from moving an object into simply moving
the robot from current position to some other position. The target predicate
move now had the form move(Start, Dist, End), which means that the robot was
ordered to move from its Start position by distance Dist and was at the end at
position End. When there is no obstacle on the way, the End position is simply the
sum of Start and Dist vectors. On the other hand, when the robot bumps on the
way into an unmovable object, it is unable to move further and its End position
is the place of impact with the object. The position and distance variables are
again vectors with real numbers.

In this experiment we again used two movable and two unmovable objects. The
data that we collected was in the form of at facts, describing the position of all
four objects at different time points. Beside the approxEqual and add predicates
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that were already described and used in the movability scenario, we allowed our
ILP system to use the following background predicates:

– interpolate(Pos, Dist, Points) – returns a list containing a sample of points
that lie on the straight line from Pos to Pos+Dist.

– occupied(Points, Obj, Pos) – the predicate accepts as input the list of points
Points and succeeds if any of these points is occupied by an object. If it is,
then it returns the information about the object and its location. Since each
object is represented as a two-dimensional point depicting the center of the
object, we also consider a point to be occupied if it lies in the near vicinity
of the object’s center.

– movable(Obj) – this predicate was learned in the previous experiments and is
now used as a background predicate. It succeeds if the object Obj is movable,
and fails otherwise.

The fact that we allow the movable predicate to be used as a background
predicate when learning the obstacle notion demonstrates the idea of evolving
theories in the XPERO project – the theories that are learned are used in the
following experiments where they can help in explaining new observations and
creating new theories. In this process of learning it might even become apparent
that the old theories are not completely correct and need to be updated or
refined.

Using the modified target predicate move and the described background pred-
icates, Hyper was not able to find a solution in one week of computer time. We
noticed that the evaluation of individual hypotheses was very slow and often took
several seconds. One of the reasons for the slowness proved to be the combina-
tion of interpolate and occupied predicates which take a long time to evaluate.
To speed up the search we introduced the following two modifications:

1. We changed the type of the Dist variable in move, add, and interpolate pred-
icates from type position to type distance. Although the Dist variable is of
the same form (a list with two numeric values) as, for example, the Start and
End variables, its meaning is nevertheless different. Introducing this change
significantly reduces the size of the search space, since there is now a much
smaller number of possible variable unifications.

2. We implemented a predicate, called reduceData, which was called after the
data trace in the form of at facts was loaded. The purpose of this predicate
was to remove at facts at those time points where the position of an object
did not change when compared to the position at the previous time point.
The reason why these facts can and should be removed is that they do not
add any new information while they do significantly increase the time needed
to evaluate a hypothesis. After calling this predicate, out of original 600 only
20 at facts remained.

Using these modifications, Hyper found the following solution:
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p(Start, Dist, Obj) :–
interpolate(Start, Dist, Positions),
occupied(Positions, Obj, Pos),
not movable(Obj).

move(Start, Dist, End) :–
add(Start, Dist, End),
not p(Start, Dist, Obj).

move(Start, Dist, End) :–
p(Start, Dist, Obj),
at(Obj, Time, Pos),
approxEqual(Pos, End).

To find this hypothesis, Hyper refined 197,378 hypotheses and needed 207
minutes. Since the combination of predicates interpolate and occupied proved to
be very slow we wanted to try an alternative which would work faster. We there-
fore replaced those background predicates with a predicate liesBetween(Start,
Dist, Obj). This predicate succeeds if there is an object that lies on a straight
line between Start and Start+Dist and in this case returns the object’s name in
the Object variable. Using this predicate Hyper was able to find the following
solution:

p(Start, Dist, Obj) :–
liesBetween(Start, Dist, Obj),
not movable(Obj).

move(Start, Dist, End) :–
add(Start, Dist, End),
not p(Start, Dist, Obj).

move(Start, Dist, End) :–
p(Start, Dist, Obj),
at(Obj, Time, Pos),
approxEqual(Pos, End).

To find this definition Hyper needed 28 minutes and in the process refined
71,224 hypotheses.

5 Generating Negative Examples

In order for Hyper to learn the target predicate, we have to specify positive
and negative examples. In our experiments, the positive examples were simply
provided by the robot, since they consist of the command given to the robot
and of the result after its execution. The negative examples, on the other hand,
cannot be collected by the robot since they consist of cases, which cannot occur
in the real world.

One way of creating negative examples is by using a form of the closed-world
assumption. According to the closed-world assumption, everything that is cur-
rently not known to be true is considered to be false. A particular form of the
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closed-world assumption is that the target predicate specifies a functional re-
lation. That is, the last argument of the predicate is a function of the other
arguments. Using this assumption we can create a negative example by simply
taking a positive example and changing the result of the command to a different
(possibly random) value.

The described approach, although it can be used to automatically generate
any number of negative examples, is inadequate. The definition of the target
predicate that we wish to discover is one that is specific enough that it will enable
the robot to predict the results of its actions. However, if we generate the negative
examples as described, we are most likely to get an overly general hypothesis
that will, when used, predict multiple possible outcomes for a given command.
Consider, for example, the notion of movability. If we generate one negative
example for each positive example by randomly changing the last argument of
the example, Hyper finds the following theory:

p(Obj).
move(Obj, Start, Dist, End) :–

add(Start, Dist, End).
move(Obj, Start, Dist, End) :–

approxEqual(Start, End).

As we can see, the theory is very general but it is nevertheless consistent
with the given data. The reason why this overly general hypothesis is sufficient
is that we have not provided some “critical” negative examples. An example of
such a negative example would be one where the robot was ordered to move a
movable object, but the End position is equal to the Start position (this should
clearly happen only when trying to move an unmovable object). Similarly, a
critical negative example for trying to move an unmovable object would be one
where the End position is the sum of the Start and Dist variables. Of course, if it
would be feasible to create a huge number of negative examples for each positive
example then we would very likely also create the critical negative examples.
However, to keep hypothesis evaluation reasonably fast, we should have as few
negative examples as possible.

How can we then “guess” what are the values of the critical negative exam-
ples? One might try to generate the value of the End variable based on the other
two variables in the command (Start and Dist). We can generate negative exam-
ples where the End variable equals the first or the second variable, or a value
computed using any arithmetic operator on them, as long as the value is different
from the End value of the positive example. In this way, we can successfully gen-
erate critical examples for the movability notion. This approach, unfortunately,
does not work in general. It does not work even for the obstacle notion, where
a critical example is one where the End position is similar to the position of an
unmovable object on the robot’s path.

The approach that we used for generating critical negative examples in our
experiments and which we believe can generally be used when learning new
notions, is as following. First, we start by creating a small number of negative
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examples by taking positive examples and changing the result of the command to
some random value. Afterwards we run Hyper, which will find the simple, overly
general theory shown above. Using this theory, the robot will now be able to
compute the expected results of its actions. We can test this theory on the already
collected positive examples. One thing that we will notice when predicting the
results of robot’s actions is that for each positive example, the theory predicts
two possible End positions for the object: one End position equals to Start and
the other to Start+Dist. Since the positive example also contains the information
about the actual End position, we can construct a new negative example using
the robot’s command and the incorrect prediction. We can run Hyper again
using this extended set of negative examples and find a new hypothesis, which
will also be consistent with the added negative examples. To find the correct
theory, we will therefore iteratively modify the current theory until it will give a
single prediction for each robot’s command. In this way, we can use intermediate
hypotheses as generators of critical negative examples and therefore add in each
iteration only those negative examples that will force the theory to be refined.

Using the presented approach we successfully generated negative examples
in all our experiments. For both notions, the movability as well as the obstacle
notion, only two iterations were needed to find the final theory. Although we pre-
sented the procedure as if it needs human intervention, it can be run completely
automatically.

6 Conclusion

In the paper we presented our experiments with predicate invention using ILP
system Hyper in a simple robotic domain. We showed examples where Hyper
was able to successfully invent several auxiliary predicates that represent the
notion of the object’s movability and the notion of an obstacle. The data that
was used for learning was collected using a real robot and therefore contained a
significant amount of noise.

Based on the performed experiments, we can draw some conclusions on the
factors that have the biggest impact on our ability to learn a desired notion:

1. The number of background predicates. Adding unnecessary background
predicates increases the number of possible hypotheses that ILP system has
to test and therefore makes the search for the right theory slower.

2. The number and type of variables in the predicates. This factor has
a huge impact on the speed of learning. If the predicates that now contain
the variables of type position would be redefined so that each value of the
list would be its own variable, the theory would not be found in a reason-
able time. It is also very important to make the types of variables different
whenever possible. This is evident from our obstacle scenario, where we had
to change the type of the Dist variable from position to distance.

3. Maximum clause length. When Hyper searches for a theory it generates
hypotheses where the length of each clause is limited to some predefined
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maximum length. Increasing maximum clause length increases the time com-
plexity, since it allows Hyper to use more literals and therefore increases the
search space. Hypotheses with longer clauses also take longer to evaluate
since variables in each literal can often be assigned several different values.

4. Slow predicates. It is likely that Hyper will have to test a large number of
hypotheses before it will find the right one. It is, therefore, important that
the validity of each hypothesis can be evaluated as quickly as possible. For
that to happen, we have to provide as efficient implementation of background
predicates as possible.

5. The length of the data traces. In the experiments above we demonstrated
how in some cases increasing the length of the traces significantly increases
the time needed to find the solution. We can use different techniques to
reduce the length of the traces. One possibility is to use data sampling, where
we use only every n-th case from the trace. A solution that we used when
discovering the obstacle notion is to remove cases with the same values. Such
cases are redundant and can usually be removed without losing any relevant
information.

Acknowledgment

The work described in this article has been funded by the European Commis-
sion’s Sixth Framework Programme under contract no. 029427 as part of the
Specific Targeted Research Project XPERO (“Robotic Learning by Experimen-
tation”).

References

1. Awaad, I.S., Leon, B.E.: Xpersim: Simulation of the robotic experimenter. Tech-
nical report, University of Applied Sciences Bonn-Rhein-Sieg (2006)

2. Boström, H.: Predicate invention and learning from positive examples only. In:
Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 226–237.
Springer, Heidelberg (1998)

3. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley, Read-
ing (2001)

4. Cocora, A., Kersting, K., Plagemann, C., Burgard, W., De Raedt, L.: Learning
relational navigation policies. In: Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (2006)

5. Deshpande, A., Milch, B., Zettlemoyer, L.S., Kaelbling, L.P.: Learning probabilis-
tic relational dynamics for multiple tasks. In: Proceedings of the Twenty Third
Conference on Uncertainty in Artificial Intelligence (UAI) (2007)

6. Dzeroski, S., De Raedt, L., Blockeel, H.: Relational reinforcement learning. In:
Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 11–22. Springer, Heidelberg (1998)

7. Kaiser, M., Klingspor, V., Morik, K., Rieger, A., Acame, M., del, J., Millan, R.:
Learning techniques for mobile systems (1995)

8. Kersting, K., Van Otterlo, M., De Raedt, L.: Bellman goes relational. In: Proceed-
ings of the Twenty-First International Conference on Machine Learning (ICML
2004), Banff, Alberta, Canada (2004)
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Abstract. Theory revision systems are designed to improve the accu-
racy of an initial theory, producing more accurate and comprehensible
theories than purely inductive methods. Such systems search for points
where examples are misclassified and modify them using revision opera-
tors. This includes trying to add antecedents in clauses usually generated
in a top-down approach, considering all the literals of the knowledge base.
This leads to a huge search space which dominates the cost of the re-
vision process. ILP Mode Directed Inverse Entailment systems restrict
the search for antecedents to the literals of the bottom clause. In this
work the bottom clause and modes declarations are introduced to im-
prove the efficiency of theory revision antecedent addition. Experimental
results compared to FORTE revision system show that the runtime of
the revision process is on average three orders of magnitude faster, and
generate more comprehensible theories without decreasing the accuracy.
Moreover, the proposed theory revision approach significantly improves
predictive accuracy over theories generated by Aleph system.

1 Introduction

Inductive Logic Programming algorithms learn First-order Logic theories from
a set of negative and positive examples and a fixed background knowledge(BK)
[Muggleton, 1992]. The BK is composed of a set of clauses assumed as correct
and therefore they can not be modified. Usually, the final hypothesis is found
through a covering approach, where at each iteration a single clause is learned
and the positive examples covered by such clause are removed from the list of
examples. Although the covering algorithm is fast, it can generate many clauses
unnecessarily long and only locally optimal [Bratko, 1999]. Besides that, the
covering approach generally learns single predicates. On the other hand, FOL
revision systems not only can also assume a part of the BK as correct and
such that will not be modified but they are also capable of modifying a part of
the initial knowledge which is approximately correct [Wrobel, 1996]. The initial
knowledge which can be modified is called as initial theory. In order to im-
prove the initial theory, the points which are failing in correctly classifying some
example are identified and modifications are proposed to these points. In this
way, FOL revision systems do not use a covering approach, it considers the whole
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theory instead of individual clauses when proposing these modifications. Thus,
more comprehensible final hypothesis are generated, with better global clauses,
and it is also possible to learn multiple predicates simultaneously.

Usually, theory revision systems such as FORTE [Richards and Mooney, 1995]
include addition of antecedents in a clause as one of the possible modifications in
a theory. In that system, the search for antecedents follows FOIL [Quinlan, 1990]
top-down approach which eventually generates a huge search space of literals
with some of them do not covering even one positive example. On the other hand,
ILP algorithms such as Progol [Muggleton, 1995] and Aleph [Srinivasan, 2001],
restrict the search for literals to those ones belonging to the bottom clause.
The bottom clause is the set of relevant literals to a positive example, collected
from a mode directed search in the BK. This hybrid bottom-up and top-down
approach frequently generates many fewer literals, and they are also guaranteed
to cover at least one positive example (that one used to generate the bottom
clause). Thus, in this work, we propose to use the literals of the bottom clause
as search space for antecedents to add in a clause. Additionally, we propose the
use of mode declarations to validate if the antecedents of the bottom clause can
effectively be added to the current clause.

The rest of this paper is organized as follows. Section 2 reviews some back-
ground knowledge concerning theory revision. Then, the proposed approach of
this work is presented in section 3, followed by the experimental results in section
4. Finally, the work is concluded in section 5.

2 First-Order Logic Theories Revision

Figure 1 presents a schema for theory revision. The theory revision system re-
ceives a theory Γ and a set of examples E+ ∪ E−, divided in a set of positive
and negative examples, respectively. The theory Γ includes two components: an
invariant component, named background knowledge (BK), and one component
that can be modified (H), named initial theory.

Ideally, the revision process should generate a final theory that it will prove
all the positive examples in E+ and none of the negative examples, E−, that
is, the final theory will be consistent with the dataset. Notice that learning in
Inductive Logic Programming (ILP) can be seen as a particular case of theory
revision where H is initially empty.

Revision Points. Many clauses can be involved in the proof of a negative
example or in no proof of a positive example, as many clauses can be correct
and do not need to be modified. Therefore, it is necessary to find the theories
points that need to be corrected, called revision points. There are two types of
revision points:

– Generalization - the literal in a clause responsible for the failure of proving
positive examples (failure point) and other antecedents (contributing points)
that may have contributed to this failure;

– Specialization - clauses used in successful proofs of negative examples.
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Theory Revision System

Final Theory

H’

Examples

E = E + U E -

Initial Theory

BK H

KB

Fig. 1. Revision Theory Schema

The specification of the revision point determines the type of revision
operator that will be applied to make the theory consistent with the dataset.
One may consider two types of operators. One may add previously missing
answers through generalization or by removing incorrect answers through spe-
cialization [Wrobel, 1996,Richards and Mooney, 1995].

Revision Operators. Theory revision relies on operators that propose modifi-
cations at each revision point. Any operator used in first-order machine learning
can be used in a theory revision system. Below, we briefly describe some opera-
tors used in this work.

The operators for specialization are:

• Delete-rule - this commonly used operator removes a clause that was used
in the prove of a negative example.
• Add-antecedent - this operator adds antecedents to an incorrect clause.

The generalization operators are:

• Delete-antecedent - this operator removes failed antecedents from clauses
that could be used to prove positive examples.
• Rule-Addition - this operator generates new clauses from existing ones using

deletion of antecedents followed by addition of antecedents. It is also possible
to create an entirely new clause.

There are other approaches of generalization and specialization operators. For
more details on revision operators we refer the reader to [Richards and Mooney,
1995]and [Wrobel, 1996].

FORTE. In this work we follow the FORTE revision system (First Order Revi-
sion of Theories from examples) [Richards and Mooney, 1995]. FORTE performs
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a hill-climbing search through a space of both specialization and generalization
operators in an attempt to find a minimal revision to a theory that makes it
consistent with the set of training examples. FORTE is a batch revision system
in the sense that the examples are all processed at once. The top-level algorithm
is exhibited as Algorithm 1.1. The key ideas are:

1. Identify all the revision points in the current theory.
2. Generate a set of proposed revisions for each revision point starting from

that one with the highest potential and working down the list. Potential is
defined as the number of misclassified examples that could be turned into
correctly classified from a revision in that point.

3. Score each revision through the actual increase in theory accuracy it achieves.
4. Retain the revision which most increases the score.

FORTE stops when the potential of next revision point is less than the score
of the best revision to date. If the best revision really improves the theory it is
implemented. Conceptually, each operator develops its revision using the entire
training set. However, in practice, this is usually unnecessary and thus FORTE
considers only the examples whose provability can be affected after proposing
some revision.

Algorithm 1.1. FORTE Algorithm (Richards and Mooney, 1995)

repeat
1. generate revision points;
2. sort revision points by potential (high to low);
3. for each revision point
4. generate revisions;
5. update best revision found;
6. until potential of next revision point is less than the score of the best revision
to date
7. if best revision improves the theory
8. implement best revision

until no revision improves the theory;

Antecedents addition. Now we further discuss the addition antecedents operation
of FORTE since our purpose is making it more efficient. There are two algorithms
for adding antecedents in a clause:

1. Hill climbing - This algorithm is based on FOIL and add one antecedent
at time. It works as follows. First, all possible antecedents are created and
scored using FOIL score. Then, the antecedent with the best score is selected.
If its score is better than the current clause score, it is added to the clause.
This process continues until either there are no more antecedents to be added
in the clause or if no antecedent can improve the current score. This approach
is susceptible to local maxima.
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2. Relational Pathfinding - In this approach a sequence of antecedents is added
to a clause at once in attempt to get out of local maxima, as, sometimes, none
of the antecedents put individually in the clause improves its performance.

The relational pathfinding algorithm is based on the assumption that
generally in relational domains there is a path with a fixed set of relations
connecting a set of terms and such path satisfies the target concept. A rela-
tional domain can be represented as a graph where the nodes are the terms
and the edges are the relations among them. Thus, we can define a relational
path as the set of edges (relations) which connect nodes (terms) of the graph.
To better visualize such approach, consider, for instance, the graph in Figure
2, which represents a part of the family domain. In this graph, horizontal
lines denote marriage relationships, and the remaining lines denote parental
relationships:

Fig. 2. An example of a relational graph representing part of the family domain

Now, suppose we want to learn the target concept grandfather, given
an empty initial rule and a positive example grandfather(peter,anne). The
relational path between the terms peter and anne is composed of the re-
lation parents connecting peter to victoria, and also of the relation pa-
rents connecting victoria to anne. From that relations, is formed the path
parents(peter,victoria),parents(victoria,anne), which can be used to define
the target concept: grandfather(A, B) : −parents(A, C), parents(C, B).

Therefore, the relational pathfinding algorithm aims to find such relational
paths given a relational domain, since important concepts are represented by
a small set of fixed paths between terms defining a positive example. From
the point of view of theory revision, this algorithm can be used whenever
a clause needs to be specialized and it does not have relational paths con-
necting its variables. In this case, a positive example proved by the clause is
chosen to instantiate it, and then, from the ground clause, relational paths
to the terms without a relationship in the clause are searched.

If the new relations found have introduced new terms that appear only
once, FORTE tries to complete the clause by adding relations that hold
between these singletons and other terms in the clause; these new relations
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are not allowed to eliminate any of the currently provable positive instances.
If FORTE is unable to use all of the new singletons, the relational path is
rejected. In this work, differently from FORTE, we do not reject a path if it
has a singleton from a predicate of arity > 3, provided that this predicate
has completed the path among the terms of the original clause.

When specializing a clause using any of these algorithms, if the antecedents
added to the clause make some positive example become not proved, the just
revised clause is added to the set of modifications proposed to the theory and
a new search for antecedents starts from the original clause, in an attempt to
recover the provability of the positive examples. This process continues until
all the positive examples originally covered by the initial clause continue to be
proved.

Antecedents Generation. When creating literals to add in a clause, all the pre-
dicates defined on the knowledge base are considered. A literal is created from
a predicate by replacing its arguments for variables. These variables may be the
ones that already exist on the clause being modified, or can be new variables in
a limit of n − 1 new ones, where n is the arity of the predicate. When creating
these literals the algorithms above consider only the constraints below, following
FOIL:

1. At least one variable of the new literal must be in the clause being revised;
2. The arguments of the literals must obey the types defined in the knowledge

base.

Such constraints does not explore properly the connections among variables,
since they are not defined as input or output variables (there are no modes de-
clarations). Besides, several different variations of the same literal are generated
from the existing variables and the new ones. Clearly, the larger is the number of
new variables on the clause, the more possible antecedents are created. Actually,
the space complexity grows exponentially on the number of new variables since
the complexity of enumerating all possible combinations of variables is exponen-
tial according to the arity of the predicate. Thus, following such approach, the
antecedents addition operation is completely inefficient, since all the literals cre-
ated must be scored in order to choose the best one. As it is known, usual scoring
functions in ILP are very expensive since they involve attempts of proving all
examples.

The process of generating literals is slightly different for the two antecedents
generation algorithms. The algorithms for these process can be seen in 1.2 and
1.3, for hill climbing and relational pathfinding algorithms, respectively.

As we said before, the relational pathfinding algorithm starts from a clause
grounded from a positive example covered by the clause. The terms in the ground
clause will be the nodes in the graph, connected by the relations defined in
clause’s body clause. The algorithm constructs the graph iteratively, starting
from these initial nodes and expanding them until finding the relational paths.
The end values are the terms (nodes) created when a node is expanded.
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Algorithm 1.2. Hill Climbing Antecedent generation
C = Clause to be specialized
for each literal in the knowledge base do

return the variables and their types from C
return the arguments and their types from the particular literal
for each combination of variables from C do

Verify if the combination is valid as possible arguments of the literal
if the combination is valid then

Replace the arguments of the literal for the combination of variables found
return the literal as a new antecedent

else
Go to the next combination of variables available

N = number of arguments of the particular literal
i = 1
while i ≤ N - 1 do

Create a new variable L
V = Variables of C + L
for each combination in V that includes L and some variable of C do

Verify if the combination is valid as possible arguments of the literal
if the combination is valid then

Replace the arguments of the literal for the combination of variables found
return the literal as a new antecedent

else
Go to the next combination of variables available

i = i + 1
Go to the next literal in the knowledge base

3 Using the Bottom Clause to Search for Antecedents
When Revising a FOL Theory

Since only the constraints above are considered when generating literals and
the search space for antecedents is composed of the whole knowledge base, the
complexity of the addition antecedents operation in a clause becomes very high
and dominates the cost of the revision process. Aiming to reduce such cost, in
this work we propose the following modifications to FORTE system:

1. to use the variabilized bottom clause as search space of literals, which reduces
the search space and also impose the following constraints:
– to limit the maximum number of different instantiations of a literal (the

recall number);
– to limit the number of new variables in a clause;
– to guarantee that at least one positive example is covered (the one which

generates the bottom clause).
2. to declare modes to the arguments of a literal. Thus, now the arguments are

defined as input, output and constant.
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Algorithm 1.3. Relational Pathfinding Antecedent generation
for each literal in the knowledge base do

return the end values and their types in the node been expanded
return the arguments and their types from the particular literal
for each combination of end values in the node do

Verify if the combination is valid as possible arguments of the literal
if the combination is valid then

Replace the arguments of the literal for the combination of end values found
return the literal as a new antecedent

else
Go to the next combination of end values

N = number of arguments of the particular literal
i = 1
while i ≤ N - 1 do

Create a new variable L
V = end values of the node + L
for each combination in V that includes L and some end value of the the node
do

Verify if the combination is valid as possible arguments of the literal
if the combination is valid then

Replace the arguments of the literal for the combination of end values
found
Search in the background knowledge for a fact that unifies with the literal
created
if a fact is found then

return the literal as a new antecedent
else

Go to the next combination of variables available
else

Go to the next combination of variables available
i = i + 1

Go to the next literal in the knowledge base

When using modes declarations and the bottom clause in FOL theory revision,
the search space is reduced and consequently the runtime of the revision process
is speeded up. Additionally, more comprehensible theories are generated since
we are focusing on the literals which are really relevant.

Using the bottom clause as search space for antecedents. In order to generate
the bottom clause in FORTE system, we use the saturation phase, defined by
Progol/Aleph. The Bottom Clause is created immediately before the search for
antecedents begins, from a positive example covered by the clause being mod-
ified(base clause). Note that as we are revising an existing theory, the body of
the base clause probably is not empty. We choose a covered positive example
because when specializing a clause the goal is to make the negative examples
covered by the clause become unprovable while the originally provable positive
examples are still covered. Thus, naturally, the bottom clause must be composed
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of the relevant literals for at least one positive example covered by the clause.
Also, in this way, the base clause is a subset of the bottom clause. The cre-
ated bottom clause becomes the search space for antecedents, which improves
the efficiency of the addition antecedents operation since it has many fewer lit-
erals than the previously space of the whole knowledge base. Additionally, we
have the guarantee that at least one positive example continues covered by the
generated literals, which was not guaranteed before by the top-down search for
antecedents. Also, as the bottom clause is already variabilized it is not necessary
to generate neither new literals nor new variables. Previously, such operation
had an exponential cost according the arity of predicates. It is important to em-
phasize that the constraints of FOIL continues to be met here, as the arguments
of the literals in the bottom clause must obey their types and there is a linking
variable between the literal being added in the clause and the literals of the
current clause.

The new antecedent generation algorithm using bottom clause for hill clim-
bing and relational pathfinding can be seen in 1.4 and 1.5, respectively.

Algorithm 1.4. Hill climbing antecedent generation using bottom clause
C = Clause to be specialized
for each literal in the bottom clause do

return the variables of C
return the variables of the particular literal
if the literal has a variable in common with C then

return the literal as a new antecedent
else

Go to the next literal in the bottom clause

Using the modes declaration to validate antecedents. The modes declaration in
Mode Directed Inverse Entailment (MDIE) search describes the relations bet-
ween the arguments and their types and also defines if a predicate can be used
in the head of the clause (modeh) or in the body of the clause (modeb). They can
also constrain the number of different instantiations of a predicate in a clause,
through the recall number. To do so, the arguments of a literal can be of three
modes:

– Input (+) - an input variable of type T in a body literal Bi appears as an
output variable of type T in a body literal that appears before Bi, or appears
as an input variable of type T in the head of the clause.

– Output(−) - an output variable of type T in the head of the clause must
appears as an output variable of type T in any literal of the body of the
clause.

– Constant(#) - an argument denoted by #T must be ground with terms of
type T

It is necessary to define the modes of the arguments in literals when genera-
ting the bottom clause, since it is created from a MDIE approach. Also, the
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Algorithm 1.5. Relational pathfinding antecedent generation using bottom
clause

for each literal in bottom clause do
return the end values with the respective variables they represent in the node
been expanded
return the variables of the particular literal
if the literal has a variable in common with the variables bound to the end values
then

Instantiate the variables in the literal that represent some end value
Search in the background knowledge a fact that unify with the literal
if a fact is found then

return the literal as a new antecedent
else

Go to the next literal in the bottom clause
else

Go to the next literal in the bottom clause

antecedents being added in the clause must be validated according to the modes
declarations and the current clause in order to decide if the antecedent can
effectively be added in the clause. These operations become necessary because
the bottom clause considers the modes for all its literals together and when
one of them is chosen to be added in the clause it may not satisfy some mode
declaration. Suppose, for example, the clause below, whose body is empty

head(A, B).

and the mode definition to this predicate is

modeh(1, head(+a, +a)).

which indicates that this predicate can be used in the head of a clause, it is
allowed only one instantiation of it (recall = 1) and their arguments are both of
input, whose types are a.

Now, suppose we are adding antecedents in that clause and the bottom clause
is as following

head(A, B) : −body1(A, C), body2(B, C), body3(C, A)

and the modes declarations for the predicates of the body are

modeb(∗, body1(+a,−a))

modeb(∗, body2(+a,−a))

modeb(∗, body3(+a,−a))

which indicates that the clause can have infinite different instantiations of the
predicates bodyi (recall = ∗) and the arguments of these predicate have both
type a, where the first one is an input term and the second one is an output term.
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If we did not consider the modes declarations the literal body3(C, A) could be
added in the current clause. However, the variable C can not appear in the place
of an input variable, according to modes definitions since it has not appeared
before in the clause. Thus, it becomes necessary to verify if the antecedent follows
the mode definition before it is scored to be put in the clause.

The modes declaration are used in different ways, depending on the addition
antecedents’ algorithm being used. In the case of hill climbing algorithm, only
one antecedent is added at once and therefore, before scoring the antecedent,
the algorithm verifies if it obeys the modes declaration taking into account the
current clause. Thus, fewer literals are evaluated which decreases the cost of the
addition antecedents process.

In the relational pathfinding algorithm, on the other hand, the antecedents
cannot be validated just after they are picked from the bottom clause, since more
than one antecedent will be added at once and therefore the mode declarations
can be valid in the whole path but not in just one of the antecedents. Thus, the
whole path is validated according to mode declarations. If the relational path
does not obey the modes declarations it is discarded, which makes many fewer
clauses be evaluated and consequently decreases the runtime of the addition of
antecedents.

4 Experimental Results

We performed some experiments in order to verify the benefits of revising FOL
theories using the bottom clause and modes declarations. Specifically, we would
like to answer the following questions:

1. What is the runtime reduction using the bottom clause and modes during
the revision process?

2. Are the accuracies obtained by the modified revision process at least main-
tained?

3. Is it possible to generate more comprehensible theories than the original
theory revision system?

4. Are the predictive accuracies obtained by the modified system better than
the accuracies returned by a traditional ILP system?

Four ILP benchmarks were considered to perform the experiments, all of them
concerning the Alzheimer domain [King et al., 1995], which compares 37 ana-
logues of Tacrine, a drug against Alzheimer’s disease, according to four properties
as described below:

1. inhibit amine re-uptake
2. low toxicity,
3. high acetyl cholinesterase inhibition and
4. good reversal of scopolamine-induced memory deficiency.

The datasets are composed of 686, 886, 1326 and 642 examples, respectively,
equally divided in positive and negative examples.
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4.1 Experimental Methodology

To overcoming the overfiting problem during training, similar to [Baião et al.,
2003],we applied K-fold stratified cross validation approach to split the input
data into disjoint training and test sets and, within that, a t-fold stratified cross-
validation approach to split training data into disjoint training and tuning sets,
keeping the rate of positive and negative examples in each fold [Kohavi, 1995].
We considered k=10 and t=5. The significance test used was corrected two-tailed
paired t-test [Nadeau and Bengio, 2003], with p < 0.05.

The initial theories provided to the revision algorithm were obtained from
Aleph system. A different theory was generated for each fold and each one of
these theories was revised considering its respective fold (the same folds are used
to generate and revise the theories). In this work, we are assuming that both
modes and types definitions are correct and therefore can not be modified.

4.2 Results

In order to answer the first three questions above, we compared the runtime, the
predictive accuracies and the size of the theories returned by original FORTE and
FORTE considering modes and bottom clause. Both hill climbing and relational
pathfinding algorithms were considered, running independently. The results are
presented in Tables 1 and 2, where 
 indicates that modified FORTE with bottom
clause and modes is significantly better than original FORTE. Each value in the
tables is the average of 10-folds cross validation.

As it can be seen from the tables, FORTE using bottom clause and modes
speeds up significantly the runtime of the revision process while still returns
more comprehensible theories and maintains the predictive accuracy, compared
to original FORTE. The ”?” in tables represents the cases where the algorithm
is running for more than 100 hours without finishing even one fold. The biggest
speedup was of 49× in the Toxic dataset, using the relational pathfinding algo-
rithm. On average, it was obtained a speedup of three orders of magnitude.

We have done experiments considering 50% of the examples to generate the
theories and all the set of examples to revise them. However, the results obtained
from these experiments were similar to these ones presented here (generating and
revising theories from all the set of examples).

Table 1. Runtime in seconds, predictive accuracy and size of the revised theories,
using hill climbing algorithm for adding antecedents in a clause

Original FORTE FORTE BC MODES

Datasets Runtime Accuracy Size Runtime Accuracy Size

Amine 616.90 72.47 96.3 42.32 � 70.68 33.5 �

Toxic 754.54 70.86 69.60 29.01 � 72.31 31.60 �

Choline 376.04 65.89 66.90 282.7 64.48 54.80

Scopo 3499.4 63.40 110 102.9 � 63.53 44.43 �
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Table 2. Runtime in seconds, predictive accuracy and size of the revised theories,
using Relational Pathfinding algorithm for adding antecedents in a clause

Original FORTE FORTE BC MODES

Datasets Runtime Accuracy Size Runtime Accuracy Size

Amine 7347.8 73.24 181.1 271.5 � 74.24 55.8 �

Toxic 11766 78.56 129.84 241.0 � 77.75 65.70 �

Choline > 360000 ? ? 751.2 � 64.48 54.8

Scopo 20061.34 65.47 253.8 444.4 � 64.29 88.6 �

In order to answer the last question, we exhibit in Figures 3, 4, 5 and 6, the
learning curves comparing the modified version of FORTE considering the bot-
tom clause and modes to Aleph, using both algorithms for adding antecedents.
The points in the curves represent predictive accuracies obtained when learning
(Aleph) and revising (Modified FORTE) considering different percentages of the
examples in the datasets. Each point in the learning curves is the average of

Fig. 3. Learning curves of Amine dataset

Fig. 4. Learning curves of Scopolamine dataset
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Fig. 5. Learning curves of Toxic dataset

Fig. 6. Learning curves of Choline dataset

10-folds cross validation. The same set of examples was used to learning and
revising the learned theories.

As we can observe from the figures, we positively answer the final question,
since the accuracies obtained by the modified FORTE are always significantly
better than accuracies obtained by Aleph, considering both algorithms for adding
antecedents.

5 Conclusions and Future Work

The antecedent addition operation of FORTE theory revision system follows
the top-down approach of FOIL. This leads to a huge search space which do-
minates the cost of the revision process; moreover, it does not properly explore
the connections among variables. In this work the efficiency of theory revision
antecedent addition was improved by the introduction of the bottom clause to
define the search space of antecedents for both algorithms Hill Climbing and
Relational Pathfinding, and the introduction of modes declarations, to define
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which literals of the bottom clause can effectively be added to the clause been
revised.

Experimental results show that a significant increase on efficiency was reached
when comparing the modified FORTE with modes and bottom clause to the ori-
ginal FORTE: on average, it was obtained a speedup of three orders of magni-
tude. Additionally, the accuracies obtained by the modified revision process ware
at least maintained compared to the original system. Also, more comprehensible
theories were generated when using the modified revision system.

The results also show that the predictive accuracies obtained by the modified
system are always better than the accuracies returned by the traditional ILP
system Aleph, considering both algorithms for adding antecedents.

When considering huge datasets, usually many facts of the background
knowledge are irrelevant to a particular problem. Meanwhile, the bottom clause
created by PROGOL/Aleph systems includes every piece of the background
knowledge in its body, which might lead to huge bottom clauses. Therefore, a
work in progress incorporates the ideas of BETH system [Tang et al., 2003] in
the revision process of FORTE. BETH reduces the search space, by considering
only the relevant literals of the bottom clause. In this way, the bottom clause
becomes ”virtual” since it is not constructed beforehand, as in done in Aleph,
but it has been discovered during the search for a good clause.

In [Ong et al., 2005], the relational pathfinding algorithm was applied to the
learning phase of Aleph system. As a future work, we intend to compare this
approach to the relational pathfinding with bottom clause and modes used in
FORTE system, as proposed in this paper.

In [Paes et al., 2008], stochastic local search techniques were applied to the
FORTE system and was obtained improvement in running time (on average, it
was obtained a speedup of one order of magnitude) as well as in accuracy. As
in the original system, the antecedent addition operation used all the knowledge
base. Therefore, to further improve the efficiency a future work will merge both
works and use the bottom clause as the search space when generating antecedents
in the stochastic revision system.

As stated by [Mooney, 1992], knowledge assimilation requires the ability to
incrementally revise a domain theory as new data is provided. However, for
the best of our knowledge, only [Esposito et al., 2000] developed a first-order
theory incremental revision system. Therefore, we intend to aggregate the ideas
of incremental batch learners to our revision system.
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Abstract. In this paper we focus on learning concept descriptions ex-
pressed in Description Logics. After stating the learning problem in this
context, a FOIL-like algorithm is presented that can be applied to general
DL languages, discussing related theoretical aspects of learning with the
inherent incompleteness underlying the semantics of this representation.
Subsequently we present an experimental evaluation of the implemen-
tation of this algorithm performed on some real ontologies in order to
empirically assess its performance.

1 Introduction

Description Logics (DLs) is the family of representation languages underlying the
standard ontology languages designed for knowledge bases in the Semantic Web
[3]. These logics constitute a specific fragment of First Order Logic (FOL) that
differs from the standard clausal forms employed in Inductive Logic Program-
ming and related multi-relational settings, namely they have a different syntax
and especially very different semantics [4, 12]. These considerations justify the
growing interest in investigating concept learning in such new formalisms.

Early work on learning in DLs essentially focused on demonstrating the PAC-
learnability for various languages derived from Classic. In particular, Cohen
and Hirsh investigate the CoreClassic DL proving that it is not PAC-learnable
[6] as well as demonstrating the PAC-learnability of a peculiar class among
its sub-languages such as C-CLASSIC [7], through the LcsLearn algorithm,
together with an empirical evaluation of its implementation.

These approaches tend to cast supervised concept learning as performed
through a structural generalizing operator working on equivalent graph repre-
sentations of the concept descriptions. It is also worth mentioning unsupervised
learning methodologies for DL concept descriptions, whose prototypical exam-
ple is Kluster [16], a polynomial-time algorithm for the induction of BACK
terminologies, which exploits the tractability of the standard inferences in this
DL language [1].

More recently also learning in hybrid languages, mixing clausal and descrip-
tion logics, have been investigated. Kietz [15] studied the learnability of DL pro-
grams. Other related approaches propose learning methods for hybrid languages,

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 107–121, 2008.
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such as Carin-ALN [21] and AL-log [19], that allow simple DLs to be combined
with Datalog.

In this work, we focus on learning concepts in expressive DLs endowed with
most of the constructors, seeking for a tradeoff between expressiveness, effi-
ciency and completeness of the resulting learning system. Indeed, more expres-
siveness requires more computational resources for the most common inferences;
hence, algorithms dealing with larger DL languages must face the complexity
of reasoning. In our vision inductive inference should be employed in order to
help the knowledge engineer construct new concept definitions that can even-
tually be further refined, either manually or by means of other semi-automatic
tools. This would save the engineer from finding trivial regularities in the ex-
amples so that he/she could concentrate the efforts in refining the induced
definition.

We implemented a specific new version of the Foil algorithm [20], resulting
in the DL-Foil system, that is adapted to learning the DL representations
supporting the OWL-DL language. The main components of this new systems
are represented by a set of refinement operators borrowed from other similar
systems [13, 18] proposed in the literature and by a different gain function which
must take into account the open-world assumption, namely, many instances may
be available which cannot be ascribed to the target concept nor to its negation.
This requires a different setting, similar to learning with unknown class attributes
[11], requiring a special treatment of the unlabeled individuals.

A preliminary experiment presented in this paper applies the DL-Foil sys-
tem to real ontologies which represent a real testbed w.r.t. the datasets employed
for testing YinYang [13] and DL-Learner [18] which limit their scope to ALC
ontologies. This also demonstrates the usage of the method as a means for per-
forming approximations of concepts across ontologies described with different
languages [5, 1].

The outcomes in terms of precision and recall were satisfactory, despite of the
employment of incomplete refinement operators. However these outcomes are not
as meaningful as they might be in a standard (closed-world) setting. Namely,
since many test instances might not be proved to be examples or counter-
examples, we resort to different performance metrics, measuring the alignment
of the classification decided by the concept descriptions induced by DL-Foil

with the classification derived deductively by a DL reasoner. This allows mea-
suring the amount of unlabeled instances that may be ascribed to the newly
induced concepts (or to their negations), which may constitute a real added
value brought by the inductive method. Actually these abductive conclusions
should be evaluated by the expert who helped during the construction of the
ontology. However, this is not always possible.

The paper is organized as follows. After the next section introducing the
representation, in Sect. 3 the refinement operators and the algorithm exploiting
them are discussed and then, Sect. 4, the adaptation of the Foil algorithm. In
Sect. 5 the experiments proving the effectiveness of the approach are reported.
Finally, possible developments are reported in Sect. 6.
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2 Description Logics: Syntax and Semantics

In this section we shortly recall syntax and semantics of the DL representation.
For brevity, we cannot report syntax and semantics of the various constructors,
which can be easily be found in the reference manual [1]. In turn, the DL con-
cept descriptions are straightforwardly mapped onto XML serializations of the
standard ontology languages [9].

Roughly, the formalisms are concept-centric: they distinguish concepts from
relations that are used to describe restrictions on concepts. In a DL language,
primitive concepts NC = {C, D, . . .} are interpreted as subsets of a domain
of objects (resources) and primitive roles NR = {R, S, . . .} are interpreted as
binary relations on such a domain (properties). Individuals represent the objects
through names from NI = {a, b, . . .}.

Complex concept descriptions are built using atomic concepts and primitive
roles by means of specific constructors. The meaning of the descriptions is defined
by an interpretation I = (ΔI , ·I), where ΔI is the domain of the interpretation
and the functor ·I stands for the interpretation function, mapping the intension
of concepts and roles to their extension (respectively, a subset of the domain and
a relation defined on such domain).

The top concept � is interpreted as the whole domain ΔI , while the bottom
concept ⊥ corresponds to ∅. Complex descriptions can be built in ALC using the
following constructors1. The language supports full negation: given any concept
description C, denoted ¬C, it amounts to ΔI \CI . The conjunction of concepts,
denoted with C1 �C2, yields an extension CI

1 ∩CI
2 and, dually, concept disjunc-

tion, denoted with C1 � C2, yields CI
1 ∪ CI

2 . Finally, there are two restrictions
on roles: the existential restriction, denoted with ∃R.C, and interpreted as the
set {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ RI ∧ y ∈ CI} and the value restriction,
denoted with ∀R.C, whose extension is {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ RI →
y ∈ CI}.

A knowledge base K = 〈T ,A〉 contains two components: a T-box T and an
A-box A. T is a set of terminological axioms C � D, yet we will consider only
definitions A ≡ D, where A ∈ NC is a concept name (atomic) and D is a concept
description given in terms of the language constructors, meaning AI = DI . The
ABox A contains extensional assertions (ground facts) on concepts and roles,
e.g. C(a) and R(a, b), meaning, respectively, that aI ∈ CI and (aI , bI) ∈ RI .
Note that the unique names assumption is not necessarily made2.

Further constructors extend the expressiveness of the ALC language. We are
interested in the languages that constitute the counterpart of OWL-DL, namely
SHOIQ(D) that, roughly, extends ALC with transitive roles, role hierarchies,

1 In fact, the ALC corresponds to the fragment of first-order logic obtained by re-
stricting the syntax to formulae containing two variables. ALC has a modal logic
counterpart, namely the multi-modal version of the logic K [1].

2 Different individual names may be mapped onto the same domain object, in
principle.
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individual classes, inverse roles and qualified number restrictions. Besides, con-
crete domains3 (D) can be dealt with.

The set-theoretic notion of subsumption between concepts (or roles) can be
given in terms of the interpretations:

Definition 2.1 (subsumption). Given two concept descriptions C and D in
T , C subsumes D, denoted by C � D, iff for every interpretation I of T it holds
that CI ⊇ DI . Hence, C ≡ D amounts to C � D and D � C.

Example 2.1. A concept definition in the proposed language may be:
Father ≡ �Male � ∃hasChild.�
which translates the sentence: ”a father is a male that has someone as his child”
(� denotes the most general concept).

Now, if we define two new concepts:
FatherWithoutSons≡ Male� ∃hasChild.� � ∀hasChild.(¬Male)
and
Parent ≡ (Male � Female) � ∃hasChild.�
then it is easy to see that Father � FatherWithoutSons and Parent � Father,
yet Father �� Parent and FatherWithoutSons �� Father.

A-box assertions are ground facts like:
Father(edward), Male(charles), hasChild.Male(edward,charles),
≥ 1.hasChild(edward), ∃hasChild.�(charles) and so on.

The most important inference service from the inductive point of view is instance
checking [1], that amounts to ascertain class-membership assertions: K |= C(a),
where K is the knowledge base a is an individual name and C is a concept
definition given in terms of the concepts accounted for in K.

An important difference with other FOL fragments is the open-world assump-
tion (OWA) which makes it more difficult to answer class-membership queries.
Thus it may happen that an object that cannot be proved to belong to a certain
concept is not necessarily a counterexample for that concept. That would only be
interpreted4 as a case of insufficient (incomplete) knowledge for that assertion.

Example 2.2 (cont’d). Given the concepts
MotherWithoutDaughters≡ Mother� ∀hasChild.¬Female
and
Super-motherMother ≥ 3.hasChild
and the ABox:
A = { Female(elisabeth), Female(diana),

Male(charles), Male(edward), Male(andrew),
MotherWithoutDaughters(diana),
hasChild(elisabeth,charles), hasChild(elisabeth,edward),
hasChild(elisabeth,andrew), hasChild(diana,william),
hasChild(charles,william) }

3 Concrete domains include data types such as numerical types, but also more elab-
orate domains, such as tuples of the relational calculus, spatial regions, or time
intervals.

4 A model could be constructed for both the membership and non-membership case [1].
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One may infer
K |= Super-mother(elisabeth)
but not
K |= MotherWithoutDaughters(elisabeth)
because it may well be that a daughter is not known yet.

This is perfectly compatible with the typical scenario related to the Semantic
Web, where new resources may continuously be made available across the Web,
hence a complete knowledge cannot be assumed at any time.

The other inference service provided by DL reasoner is concept retrieval : given
a certain concept, retrieve all the individuals that can be proved to belong to it.

3 Learning as Search in DLs

After recalling the basics of DLs, we are ready to formally define the learning
problem in this setting.

Definition 3.1 (learning problem). Let K = (T ,A) be a knowledge base.
Given

– a (new) target concept name C

– a set of positive and negative examples Ind+
C(A) ∪ Ind−C(A) ⊆ Ind(A)

where Ind(A) is the set of individuals occurring in A,
Ind+

C(A) = {a ∈ Ind(A) | K |= C(a)}, Ind−C(A) = {a ∈ Ind(A) | K |= ¬C(a)}

Suppose, in case a definition for C is already available (refinement problem),
that it holds:

∃a ∈ Ind+
C(A) K �|= C(a) or ∃b ∈ Ind−C(A)) K �|= ¬C(b)

Buld a concept definition C ≡ D such that

K |= C(a) ∀a ∈ Ind+
C(A) and K �|= C(b) ∀b ∈ Ind−C(A)

The definition given above can be interpreted as a generic supervised concept
learning task. Ind+

C(A) and Ind−C(A) represent respectively the sets of positive
and negative examples, whereas C ≡ D is the hypothesis to be induced. The
intermediate clause was added for generalizing the definition covering also re-
finement problems, in which a definition for C is already available but it may be
defective w.r.t. to some positive or negative examples.

As known from related works [10, 13, 17], the subsumption relationship (see
Def. 2.1) induces a partial order on the space of all the possible concept descrip-
tions. Hence the inductive problem stated above can be cast as a search of the
right concept definition (hypothesis) in the induced search space.

In such a setting, one can define suitable operators in order to traverse the
search space. As usual in inductive search, we will define two operators in order
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to obtain, given a starting (incorrect) hypothesis in the search space, one (or
some) of its generalizations/specializations.

Of course, given a set of concept definitions belonging to the space of the
descriptions allowed by the reference language, which is partially ordered by
subsumption, there is an infinite number of generalizations and specializations.
Usually one tries to devise operators that can move efficiently throughout the
space in pursuit of one of the target hypotheses.

Now we can define both the downward (specializing) operator ρ and the up-
ward (generalizing) operator δ [13]:

Definition 3.2 (downward operator ρ). ρ = (ρ�, ρ	), where:
[ρ�] given a description in normal form D = D1 � · · · �Dn:

– D′ ∈ ρ�(D) if D′ =
⊔

1≤i,j≤nDi for some j �= i, 1 ≤ j ≤ n

– D′ ∈ ρ�(D) if D′ = D′
i �

⊔j �=i
1≤i,j≤nDk for some D′

i ∈ ρ	(Di)

[ρ	] given a conjunctive description C = C1 � · · · � Cm and a set of concept
descriptions A− = {Ek | 1 ≤ k ≤ p}:

– C′ ∈ ρ	(C) if C′ = C � Cj+1

for some Cj+1 �� C and Cj+1 �� Eh, for h ∈ {1, . . . , p}
– C′ ∈ ρ	(C) if C′ = (C � ¬Cj) �C′

j for some j ∈ {1, . . . , m}, where:
• C′

j = ∃R.D′
j, Cj = ∃R.Dj and D′

j ∈ ρ�(Dj) or
• C′

j = ∀R.D′
j, Cj = ∀R.Dj and D′

j ∈ ρ�(Dj)

ρ� simply drops one top-level disjunct or replaces it with a downward refinement
obtained with ρ	. ρ	 adds new conjuncts or replaces one with a refinement
obtained by specializing (through ρ�) the concepts in the scope of a universal
or existential restriction.

Definition 3.3 (upward operator δ). δ = (δ�, δ	), where:
[δ�] given a description in normal form D = D1 � · · · �Dn and a set of concept
descriptions A+ = {Eh | 1 ≤ h ≤ p}:

– D′ ∈ δ�(D) if D′ = D � Dn+1 for some Dn+1 such that Dn+1 �� Di,
i ∈ {1, . . . , n} and Dj+1 � Eh for some h ∈ {1, . . . , p}

– D′ ∈ δ�(D) if D′ = D′
i �

⊔k �=i
1≤i,k≤nDi for some D′

i ∈ δ	(Di)

[δ	] given a conjunctive description C = C1 � · · · � Cm:

– C′ ∈ δ	(C) if C′ =
�j �=i

1≤i,j≤mCi

– C′ ∈ δ	(C) if C′ =
�j �=i

1≤i,j≤mCi � C′
j , where:

• C′
j = ∃R.D′

j, Cj = ∃R.Dj and D′
j ∈ δ�(Dj) or

• C′
j = ∀R.D′

j, Cj = ∀R.Dj and D′
j ∈ δ�(Dj)

δ� and δ	 simply perform dual operation w.r.t. ρ� and ρ	, respectively. See [13]
for examples.

Other operators [13] may exploit also the knowledge conveyed by the positive
and negative examples in order to prune the possible results yielded by a single
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generalization/specialization step and to better direct the search for suitable
solutions to the problem. Instead of using the examples in a mere generate-and-
test strategy based on these operators, they can be exploited more directly, in
order to influence the choices made during the refinement process.

These operators cannot be complete for most expressive DLs [17]. However,
we are not looking for too precise operators that likely lead to overfit the data.
E.g. the LCS function [7] is a generalizing operator that may be used to compute
upper refinement of a concept w.r.t. to an uncovered positive instance (repre-
sented by its most specific concept, see [1, 13]), yet this results in a simple union
of the two descriptions which deprives the result of any added generalization
w.r.t. future examples.

The next step is embedding these simple operators in a suitable learning
algorithm.

4 The Learning Algorithm

Various search strategies have been experimented as well as other evaluation
measures. Those that we will present in the following are those which gave the
best results.

The main aim of this work was conceiving a learning algorithm that could
overcome two limitation of the current DL learning systems, namely avoiding
the computation of the most specific concepts and the language dependence.
Indeed, following the early work, YinYang [13] requires lifting the instances
to the concept level through a suitable approximate operator and then start
learning from such extremely specific concept descriptions. This setting has the
disadvantages of approximation and language-dependence.

DL-Learner [18] partly mitigates these disadvantages for it does not need
to compute such approximations since it is essentially based on a genetic pro-
gramming procedure based on refinement operators whose fitness is computed
on the grounds of the covered instances.

Also, in our new algorithm conceived in order to solve the learning problem,
the (downward) refinement operators previously defined play a central role. A
sketch of the main routine that makes up the algorithm is reported in Fig. 1.

Like in the original Foil algorithm [20], the generalization routine computes
(partial) generalizations as long as they do not cover any negative example. If
this occurs, the specialization routine is invoked for solving these sub-problems.
This routine applies the idea of specializing using the (incomplete) refinement
operator defined in the previous section. The specialization continues until no
negative example is covered (or a very limited amount5 of them). The partial
generalizations built on each outer loop are finally grouped together in a dis-
junction which is an allowed constructor for DLs more expressive than (or equal
to) ALC. Also the outer while-loop can be exited before covering all the positive
examples for avoiding overfitting generalizations.
5 The actual exit-condition for the inner loop being: |Negatives|−|CoveredNegatives| <

ε, for some small constant ε.
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function DL-Foil(Positives, Negatives, Unlabeled): Generalization
input Positives, Negatives, Unlabeled : positive, negative and unlabeled individuals
output Generalization: concept definition

begin
Generalization ← ⊥
PositivesToCover ← Positives
while PositivesToCover �= ∅ do

begin
PartialDef ← �
CoveredNegatives ← Negatives
while CoveredNegatives �= ∅ do

begin
PartialDef ← specialize(PartialDef, PositivesToCover,CoveredNegatives, Unlabeled)
CoveredNegatives ← {n ∈ Negatives | K |= ¬PartialDef(n)}
end

CoveredPositives ← {p ∈ PositivesToCover | K |= PartialDef(p)}
Generalization ← Generalization � PartialDef
PositivesToCover ← PositivesToCover \ CoveredPositives
end

return Generalization
end

Fig. 1. The main generalizing routine in DL-Foil

The specialization function specialize (reported in Fig. 2) is called from
within the inner loop of the generalization procedure in order to specialize an
overly general partial generalization. The function searches for proper refine-
ments that provide at least a minimal gain (see below) fixed with a threshold
(MINGAIN ).

In Foil-I [14], the gain function has to take into account incomplete exam-
ples. Similarly to a semi-supervised learning setting, the gain function that is
evaluated for choosing the best refinement is computed as follows:

p1 ·
[
log

p1 + u1w1

p1 + n1 + u1
− log

p0 + u0w0

p0 + n0 + u0

]

where p1, n1 and u1 represent, resp., the number of positive, negative and un-
labeled examples covered by the specialization and p0, n0 and u0 stand for the
number of positive, negative and unlabeled examples covered by the former def-
inition, and the weights w0, w1 are determined by the prior probability of the
positive examples, resp., in the current and former concept definition. In order
to avoid null numerators, a further correction of the probabilities is performed
by resorting to the m-estimate procedure.

Despite of its simplicity the complexity of the algorithm is largely determined
by the calls to reasoning services, namely subsumption and instance-checking. If
we consider the ALC logic the complexity of these inferences is P-space. How-
ever, the algorithm can be thought as building an (upper) ALC-approximation
of target concepts, given a knowledge base that can contain definitions expressed
in more complex languages, which in turn require more complex reasoning al-
gorithms (see details on SHOIN (D) [1]). The number of nodes visited during
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function specialize(PartialDef, Positives, Negatives, Unlabeled): Refinement
input PartialDef : concept definition

Positives, Negatives, Unlabeled : positive, negative and unlabeled individuals
output Refinement : concept definition
const MAXNUM : maximum real number

MINGAIN : minimal acceptable gain
NUMSPECS : number of specializations to be generated

begin
bestGain ← −MAXNUM
while bestGain < MINGAIN do

for i ← 1 to NUMSPECS do
begin
specialization ← getRandomRefinement(ρ,PartialDef)
CoveredNegatives ← {n ∈ Negatives | K |= ¬PartialDef(n)}
CoveredPositives ← {p ∈ Positives | K |= PartialDef(p)}
thisGain ← gain(CoveredPositives,CoveredNegatives,Unlabeled,Positives, Negatives)
if thisGain > bestGain then

begin
bestConcept ← refConcept
bestGain ← thisGain
end

end
return Refinement
end

Fig. 2. The specializing routine in DL-Foil

the search grows with the expressiveness of the language because the algorithm
searches a sub-space of the actual search space induced by the adopted language.

5 Preliminary Experiments

5.1 Experimental Setting

In order to perform a preliminary experimentation on real ontologies DL-Foil, it
was applied to a number of concept retrieval problems solved by using inductive
classification of the individuals w.r.t. a number of query concepts.

To this purpose, we selected a number of ontologies from different domains
represented in OWL, namely: NewTestamentNames (NTN) from the Protégé
library6 accounting for characters and places mentioned in the book, the BioPax
glycolysis ontology7 (BioPax) describing the glycolysis pathway from the EcoCyc
database, translated into BioPax format. It is intended to show what a pathway
from an existing database might look like after being translated into BioPAX
format. The Financial ontology8, built for eBanking applications, deals with
accounts, holders, loans and related events. Tab. 1 summarizes important details

6 http://protege.stanford.edu/plugins/owl/owl-library
7 http://www.biopax.org/Downloads/Level1v1.4/
biopax-example-ecocyc-glycolysis.owl

8 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

http://protege.stanford.edu/plugins/owl/owl-library
http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-glycolysis.owl
http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-glycolysis.owl
http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
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Table 1. Facts concerning the ontologies employed in the experiments

Ontology DL language #concepts #object prop. #data prop. #individuals
BioPAX ALCHF(D) 28 19 30 323

NTN SHIF(D) 47 27 8 676
Financial ALCIF 60 17 0 1000

concerning these ontologies. The sizes of the ontologies are to be measured in
terms of thousands of triples.

For each ontology, 30 target queries were randomly generated by composi-
tion of 2 through 8 primitive or defined concepts from each knowledge base by
means of the concept constructors: intersection, union, universal or existential
restrictions. Given the overall set of individuals mentioned in the ABox, this
was split in training and test sets according to the ten-fold cross-validation pro-
cedure. A standard reasoner9 was employed to decide their class-membership
(and non-membership) w.r.t. the query concepts. The performance was evalu-
ated comparing the definitions of the query concepts induced by the system to
those that were randomly generated, determining the class-membership of the
test examples.

Note that the constant NUMSPECS that determines the maximum number
of specializations evaluated per turn was set to 15 (larger numbers yield better
results but may lower the efficiency).

5.2 Results

Standard IR measures. Initially the standard IR measures precision, recall,
F1-measure were employed to evaluate the system performance. Specifically
we considered a two-way classification where relevance coincides with class-
membership and the rest of instances are considered irrelevant (true negatives if
nothing could be concluded for their membership).

The outcomes are reported in Fig. 2. For each knowledge base, we report the
average values obtained over the 30 queries as well as their standard deviation
and minimum-maximum ranges of values.

It is possible to note that precision and recall are generally good but not
very high which is also reflected by the F-measure. This happens because these
parameters are taken on the grounds of the positive instances which are likely to
be in a limited amount w.r.t. the overall number of individuals, especially when
random concepts are considered. This is also the cause for the variance to be
quite high for all experiments. For the sake of repeatability, we did not employ
artificially populated ontologies. We rather employed ontologies as they can be
found in the Web. Of course more largely populated ontologies would help assess
more stable results. Actually for Financial we selected a reduced number of

9
Pellet v. 1.5.1 was employed for instance-checking. The reasoner is publicly avail-
able at: http://pellet.owldl.com.

http://pellet.owldl.com


DL-FOIL Concept Learning in Description Logics 117

Table 2. Experimental results in terms of standard IR measures: averages ± standard
deviations and [min,max] intervals

ontology precision recall F1-measure

BioPax
66.0 ± 24.1 76.5 ± 21.7 69.6 ± 21.0
[28.3;99.4] [36.5;100.0] [31.9;99.7]

NTN
59.0 ± 36.8 64.9 ± 25.7 59.1 ± 30.0
[18.8;100.0] [27.9;100.0] [22.5;100.0]

Financial
62.1 ± 40.7 64.8 ± 37.0 63.3 ± 39.1
[19.1;99.1] [24.3;99.0] [66.7;21.3;99.0]

instances. Selecting larger numbers of individuals, we could obtain better and
more stable results.

The reason for precision being less than recall is probably due to the OWA.
Indeed, in many cases it was observed that the inductive classification deemed
some individuals as relevant for the query issued while the DL reasoner was not
able to assess this relevance and this was computed as a mistake while it may
likely turn out to be a correct inference when judged by a human agent.

Because of the problems issued by the OWA, different indices would be needed
in this case that may make explicit both the rate of inductively classified indi-
viduals and the nature of the mistakes.

Alternative measures. Due to the OWA, cases were observed when, it could
not be (deductively) ascertained whether a resource was relevant or not for a
given query. Then a three-way classification is preferable. Hence, we introduced
the following indices for a further evaluation [8]. Essentially they measure the
correspondence between the classification provided by the reasoner for the in-
stances w.r.t. the test concept and the definition induced by our system.

– match rate: number of cases of individuals that got exactly the same classi-
fication with both definitions;

– omission error rate: amount of individuals for which class-membership w.r.t.
the given query could not determined using the induced definition, while they
actually belong (do not belong) to the query concept;

– commission error rate: amount of individuals found not to belong to the
query concept according to the induced definition, while they actually belong
to it and vice-versa.

– induction rate: amount of individuals found to belong or not to belong to
the query concept according to the induced definition, while either case is
not logically derivable from the knowledge base with the original definition

Tab. 3 reports the outcomes in terms of these new indices. Preliminarily,
we found that the search procedure was accurate enough: it made few critical
mistakes especially when the considered concepts are known to have many ex-
amples (and counterexamples) in the ontology. However, it is important to note
that, in each experiment, the commission error was limited but not absent, as
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Table 3. Results with alternative indices: averages ± standard deviations and
[min,max] intervals

match commission omission induction
ontology rate error rate error rate rate

BioPax
76.9 ± 15.7 19.7 ± 15.9 7.0 ± 20.0 7.5 ± 23.7
[56.0;99.4] [0.0;44.0] [0.0;64.0] [0.0;75.0]

NTN
78.0 ± 19.2 16.1 ± 4.0 6.4 ± 8.1 14.0 ± 10.1
[43.6;95.4] [0.0;10.8] [1.2;21.3] [2.5;27.1]

Financial
75.5 ± 20.8 16.1 ± 12.8 4.5 ± 5.1 3.7 ± 7.9
[50.2;98.1] [0.6;25.6] [1.0;12.6] [0.3;18.1]

in the experiments with other classification methods [8]. The cases of queries for
which this measure was high are due to the limited amount of examples avail-
able (too narrow concepts). Even few mistakes provoked high error rates. This
is also due to the absence of axioms stating explicitly the disjointness of some
concepts.

Also the omission error rates are quite low. They are comparable with the
amount of inductive conclusions that could be drawn with the induced defini-
tions. Again these figures may vary as a consequence of the presence / absence
of knowledge about the disjunction of (sibling) concepts in the subsumption
hierarchies. In an ontology population perspective, the cases of induction are in-
teresting because they suggest new assertions which cannot be logically derived
by using a deductive reasoner yet they might be used to complete a knowl-
edge base [2], e.g. after being validated by an ontology engineer. Better results
were obtained on the same task with different inductive methods (instance-based
learning [8]). Yet, with DL-Foil we have the added value of having an intensional
definition of the target concepts.

The elapsed time (not reported here) was very limited: about 0.5 hour for a
whole ten-fold cross validation experiment including the time consumed by the
reasoner to make the judgments.

5.3 Learned Concepts

For each ontology, we report examples of the concept descriptions that were
learned during the experiments and compare them to the query concept that
generated the examples and counterexamples.

BioPax

induced:
Or( And( physicalEntity protein) dataSource)
original:
Or( And( And( dataSource externalReferenceUtilityClass)
ForAll(ORGANISM ForAll(CONTROLLED phys icalInteraction))) protein)
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NTN

induced:
Or( EvilSupernaturalBeing Not(God))
original:
Not(God)

Financial

induced:
Or( Not(Finished) NotPaidFinishedLoan Weekly)
original:
Or( LoanPayment Not(NoProblemsFinishedLoan))

These concepts totally overlap in terms of their extensions w.r.t. the known
individuals.

Of course for a correct qualitative interpretation of the value of these concepts
some familiarity is assumed with the ontologies. As mentioned, they are all freely
available at standard repositories.

6 Conclusions and Outlook

In this work, we investigated learning expressive DLs supporting ontology lan-
guages such as OWL. We implemented a Foil-like algorithm in the DL-Foil

system, that is an adaptation to the issues related to the different representation.
The main components of this new system are represented by a set of refinement
operators and by a different gain function which takes into account the open-
world assumption. Namely many instances may be available which cannot be
ascribed to the target concept nor to its negation. This requires a different set-
ting and a special treatment of the unlabeled individuals.

A preliminary experimentation has been presented in this paper, applying the
DL-Foil system to learning from individuals in real ontologies which represent
a harder testbed w.r.t. the datasets employed for testing YinYang [13] and
DL-Learner [18] that limited their scope to ALC ontologies.

The outcomes in terms of precision and recall were satisfactory. However,
since these outcomes are not as meaningful as they might be in a standard
(closed-world) setting, we recurred to different performance metrics, measuring
the alignment of the classification decided by the concept descriptions induced
by DL-Foil with the classification derived deductively by a DL reasoner. This
allowed measuring the amount of unlabeled instances that may be ascribed to the
newly induced concepts (or to their negations), which constituted a real added
value brought by the inductive method. Actually these abductive conclusions
should be evaluated by the expert who helped during the construction of the
ontology which was not possible unless toy-ontologies were employed.

The experiments made on various ontologies showed that the method is quite
effective, and its performance depends on the number (and distribution) of the
available training instances. Besides, the procedure appears also robust to noise
since commission errors were limited in the experiments carried out so far.
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We plan to extend this work evaluating the benefits the algorithm can receive
from the addition of other reasoning strategies such as abstraction and abduc-
tion. Another important issue is related to the employment of suitable distance
or similarity measures that could influence chosen generalization strategy as
well as example ordering in the training set. The measure may be applicable to
other instance-based tasks which can be approached through machine learning
techniques. Then the measure might be plugged in a hierarchical clustering al-
gorithm where clusters would be formed grouping instances on the grounds of
their similarity assessed through the measure.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

[2] Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, pp. 230–235 (2007)

[3] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

[4] Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence 82(1–2), 353–367 (1996)
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Abstract. We are interested in learning complex combinatorial features from re-
lational data. We rely on an expressive and general representation language whose
semantics allows us to express many features that have been used in different sta-
tistical relational learning settings. To avoid expensive exhaustive search over the
space of relational features, we introduce a heuristic search algorithm guided by
a generalized relational notion of information gain and a discriminant function.
The algorithm succesfully finds interesting and interpretable features on artificial
and real-world relational learning problems.

1 Introduction

A key component of relational data mining methods is the construction of relevant
features. Whereas in conventional (“propositional”) learning settings the set of possible
features is usually given by the available attributes, one has in relational learning the
ability to construct new features by considering the relational neighborhood of an entity.
Taking into consideration related entities and their attributes, one obtains a large supply
of potential features.

To illustrate the situation, consider Figure 1, which gives a graphical representation
of an imaginary fragment of a movie database. Unfilled circles represent movies, shaded
circles represent actors, arrows represent the binary relation cast, and stars identify
movies that have won the best picture award. Suppose, now, that for movies m1, m2 it
is not yet known whether they will win best picture award, and we want to predict this.
For this prediction, awards won by movies with the same actors as m1, m2 may provide
relevant information.

m1 m2

m3 m4

m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

m16

m17 m18 m19

a1 a2 a3 a4 a5 a6 a7

Fig. 1. Movie data fragment
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To express features in terms of properties of related objects, many different frame-
works have been proposed. Some approaches are based on Boolean features corre-
sponding to logical conditions like “there exists an actor in the cast who has also played
in a movie that has won the best picture award.” Formal languages for expressing such
features can be based on predicate logic (as in inductive logic programming), or use
graphical representations [9].

Movies m1, m2 in Figure 1 can not be distinguished with such simple qualitative
features, since both satisfy the same basic logical properties. Nevertheless, considering
certain quantitative aspects of the relational neighborhoods of m1, m2, one might per-
haps expect that m2 has a higher chance of receiving an award than m1: the two awards
associated with m1 come from cast members who have appeared in a relatively large
number of movies, indicating that these are perhaps actors playing minor roles in many
different movies, some of which happened to be successful. The awards associated with
m2, on the other hand, come from actors appearing in fewer movies, indicating that
these could be major actors having leading roles in m2.

One well established approach to express quantitative features is the use of slot
chains and aggregation, which translate into database queries [5,13,14]. An example
is the feature that counts the number of award-winning movies played by all cast mem-
bers. This feature evaluates to 2 for both m1 and m2, and thus does not express the
distinction described above. This distinction could be expressed by using proportion
instead of count as a form of aggregation, yielding the feature that measures the propor-
tion of award-winning movies among those played by cast members. It evaluates to 2/13
and 2/4 for m1 and m2, respectively, and thus makes the desired distinction. However,
it is doubtful that this numeric feature captures exactly the most relevant quantitative
information for making a prediction about m1, m2. Perhaps the count of actors with a
proportion of ≥ 50% award winning movies among the movies they participated in is
the more relevant feature (here evaluating to 0 and 2, respectively, assuming that the
movie to be classified is not considered in the count). Nested aggregates like this have
been used in conjunction with first-order decision trees [1].

This very simple example illustrates three interesting aspects of relational features.
First, the search space of possible features constructible by different combinations of
aggregation, even for a single given slot chain, is quite big; second, each feature that
we can construct in this way will probably only provide an approximation to the most
relevant quantitative information for the prediction of the class label, and third, all these
features are really summary statistics of a single, underlying more complex and fun-
damental feature: the complete specification of how many actors in the movie to be
classified acted in how many other award winning and non award winning movies. The
values of this count of count feature for m1, m2 are given by:

m1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{
a : 1
¬a : 3

}
: 2

{
a : 0
¬a : 3

}
: 1

{
a : 0
¬a : 2

}
: 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

m2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{
a : 1
¬a : 1

}
: 1

{
a : 1
¬a : 0

}
: 1

{
a : 0
¬a : 1

}
: 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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The value for m1 shows that in the cast of m1 there are two actors that acted in 1 award
winning, and 3 non award winning movies. The formatting of the feature value em-
phasizes the hierarchical, combinatorial structure of these count of count values (which
can also be nested deeper into count of count of count values, etc.). Note that count of
count features in our sense are quite different from nested aggregates in the sense of [1]:
unlike the latter, our counts of counts do not aggregate a multiset of values into a single
number at each level of nesting.

In this paper, we study relational learning on the basis of complex count of count fea-
tures. To this end we first review syntax and semantics of Type extension trees (TETs),
which are a representation language for such features first introduced in [7]. It has been
shown in [7] that the TET language is very powerful, and many classes of features that
have been used in relational learning can be derived from TET features.

However, the use of TET features in actual learning tasks has not been studied so
far. In this paper, we introduce an algorithm for learning the structure of a TET from
data in the supervised learning setting. A key component of this algorithm is a special
kind of discriminant function that maps TET values into real numbers, and can be used
as a simple but computationally efficient classifier. The TET learning algorithm uses
heuristic search based on two types of evaluation heuristics: a generalized information
gain measure for relational data, and a wrapper evaluation score based on empirical
error of the discriminant function. Our experimental evaluation shows that we can learn
TETs representing relevant and interpretable features.

2 TET Basics

In this section, we review the basic syntax and semantics definitions of TETs [7]. To
simplify the definitions, we will assume fully Boolean domains, i.e. all attributes and
relations are Boolean. All basic concepts can be quite easily generalized to multi-valued
attributes and relations. In a Boolean domain, data can be viewed as a model in the sense
of the following definition.

Definition 1. Let R be a relational signature i.e. a set of relation symbols of different
arities. A (finite) model for R, M = (M, I) consists of a finite domain M , and an
interpretation function I : r(a) → {true, false} defined for all ground atoms r(a)
constructible from relations r ∈ R and arguments a ∈M arity(r).

In logic programming terminology,M is a Herbrand interpretation for the vocabulary
consisting of R and constant symbols for the elements of M . For convenience we may

movie(v)
(0.5)

cast(v, w)
(0.375)

w cast(u, w), u �= v
(0.222)

u

award(u)
(0.5)

¬award(u)
(0.181)

Fig. 2. A simple TET
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assume that the domain M is partitioned into objects of different types, that arguments
of relations are typed, and that I is only defined for ground atoms with arguments of
appropriate types. We now proceed to define the formal syntax for expressing count of
count features. The following definition is illustrated by Figure 2, which shows the TET
defining the movie feature whose values for m1, m2 are shown in Eq. 1. The numbers
in parantheses included in Figure 2 will be explained in Example 2 below.

Definition 2. An R-literal is a (negated) atom r(v) (r ∈ R ∪ {=}, v a tuple of (pos-
sibly typed) variable symbols). An R-literal may not contain any constant symbols for
elements a ∈ M as arguments. We also allow the special literal �(v), which always
evaluates to true. A type is a conjunction of R-literals.

A type extension tree (TET) over R is a tree whose nodes are labeled with R-types,
and whose edges are labeled with (possibly empty) sets of variables.

Note that the type of an object corresponds to a literal consisting of a single unary
relation (e.g. movie(v)). Definition 2 generalizes this to types of tuples of objects, and
to types which are expressed via a conjunction of literals. Labeled edges in a TET
are related to quantifiers in predicate logic: like a quantifier, a labeled edge binds all
occurrences of the variables associated with the edge in the subtree rooted at this edge.
The free variables of a TET are all variables not bound by an edge label. The TET
of Figure 2 has the single free variable v. We write T (v) to denote a TET whose free
variables are among the variables v (but does not necessarily contain all of them). We
write

T (v) = [τ(v), (w1, T1(v, w1)), . . . , (wm, Tm(v, wm))]

to denote a TET with a root labeled with τ(v), and m sub-trees T1(v, wi) reached by
edges labeled with variables wi (possibly empty).

A TET T (v) with free variables v = v1, . . . , vk defines a feature for k-tuples of
domain elements: for any modelM, and any a ∈ Mk the TET defines a feature value
V (T (a)). Eq 1 shows V (T (m1)) and V (T (m2)) for the TET T in Figure 2. We give
the general definition of TET semantics in two steps: first we define the value space of
nested counts associated with a given TET, and then the actual mapping a �→ V (T (a)).

Definition 3. For any set A we denote with multisets(A) the set of all multisets over
A. We denote with {a1 : k1, . . . , an : kn} a multiset that contains ki copies of ai. The
pruned value space V(T ) of a TET T is inductively defined as follows:

– If T = [τ ] consists of a single node, then V(T ) = {true, false}.
– If T = [τ, (w1, T1), . . . , (wm, Tm)], then

V(T ) = {false} ∪ ×m
i=1multisets(V(Ti)))

We call the V(T ) of Definition 3 the pruned value space, because with these values
we will only count objects that satisfy the conditions in the nodes. Full TET values, as
originally defined in [7], treat true and false on an equal basis, and count both satisfying
and non-satisfying objects.

Definition 4. LetM = (M, I) be a model, T (v1, . . . , vk) a TET, and a ∈ Mk. The
value V (T (a)) ∈ V(T ) is defined as follows:
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(i) If T (v) = [τ(v)] consists of a single node, then V (T (a)) := I(τ(a)).
(ii) Otherwise:

(a) If I(τ(a)) = false then V (T (a)) = false.
(b) If I(τ(a)) = true then

V (T (a)) = (μ(a, w1, T1), . . . , μ(a, wm, Tm)),

with μ(a, wi, Ti) ∈ multisets(V(Ti)) given by

{γ :|{b ∈M | V (Ti(a, b)) = γ}| | γ ∈ V(Ti)}.

Example 1. Eq. 1 shows V (T (m1)) and V (T (m2)). To explain the compuations of
V (T (m1)), we introduce abbreviations for sub-TETs of T :

T (1)(u, w) := [cast(u, w), (∅, [award(u)]), (∅, [¬award(u)])]
T (2)(v, w) := [cast(v, w), (u, T (1)(u, w))]

Since I(movie(m1)) = true, the computation of V (T (m1)) follows case ii.b of Def-
inition 4. That means we have to count for each γ ∈ V(T (2)) the number of actors a
for which V (T (2)(m1, a)) = γ. We do this by computing for each of the four actors
a1, . . . , a4 the value V (T (2)(m1, ai)). Consider a1. Since I(cast(m1, a1)) = true, we
again reach case ii.b, and now have to compute for each of the 13 movies m′ �= m1 the
value V (1)(m′, a1). For 9 out of the 13 movies this is just the false value (ii.a), because
I(cast(m′, a1)) = false. For 3 movies (the ones without award), we obtain the value
({false : 1}, {true : 1}) (the pair of values (V ([award(m′)]), V ([¬award(m′)]))), and
for the award winning movie the value ({true : 1}, {false : 1}). Collecting these counts,
we get

V (T (2)(m1, a1)) =

⎧⎨
⎩

false : 9
({false : 1}, {true : 1}) : 3
({true : 1}, {false : 1}) : 1

⎫⎬
⎭

This has been simplified to {a : 1,¬a : 3} in Equation 1. The same value is obtained
for V (T (2)(m1, a2)), giving a count of 2 for this value in V (T (m1)).

A TET T (v) represents a feature of object tuples a. Several features might be expressed
by TETs T1(v), . . . , Tm(v). Such a collection of features can always be combined into
the single TET [�(v), (∅, T1(v)), . . . (∅, Tm(v))], which exactly provides the combined
information of the Ti. In the following we will therefore focus on the scenario where a
single TET represents all relevant features.

3 TET Discriminant Function

A TET alone only defines a feature of objects in a relational domain. TET-defined fea-
tures can be incorporated in many ways into existing types of predictive or descriptive
models. For example, one can define distance or kernel functions on TET value spaces
V(T ), thereby making TET features useable for standard clustering techniques, or SVM
classifiers. In this section we briefly describe how to build a predictive model on a TET
feature using simple discriminant functions on TET values, i.e. functions of the form

d : V(T )→ R.
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To obtain a binary classification model (throughout we assume that class labels are
{+,−}), we learn two discriminant functions d+, d−, and a threshold value t, and as-
sign class label + to a tuple a iff

d+(V (T (a))/d−(V (T (a)) > t. (2)

We now introduce one simple type of TET-discriminant function. The motivation for the
particular form of discriminant function we propose is twofold: first, for a given TET,
our functions are efficient to learn and evaluate. Since we use the discriminant function
in TET learning within a wrapper evaluation routine for candidate TETs, efficiency is
an important issue. Second, in spite of their simplicity, one can show that “proposi-
tional TETs” (TETs with only unary relations and no edge labels) together with these
discriminant functions provide a uniform generalization of the classic decision tree and
Naive Bayes models. Due to space limitations we have to defer a full discussion of the
relationship between our discriminant functions and other predictive models to a full
paper.

Definition 5. Let T be a TET. A weight assignment β for T assigns a nonnegative real
number to all nodes of T . A weight assignment can be written as (βr , β1, . . . , βm),
where βr is the weight assigned to the root, and βi is the weight assignment to the ith
sub-tree.

For a TET T with node weights β we define the discriminant function dβ as follows.
Let γ ∈ V(T ):

– If γ = false define dβ(γ) := 0.
– If γ = true then T = [τ(v)] consists of a single node, and β = (βr). Define

dβ(γ) := βr.
– If γ = (μ1, . . . , μm), μi ∈ multisets(V(Ti)), define

dβ(γ) := βr ·
m∏

i=1

∏
γ′∈μi,γ′ �=false

1
βr

dβi(γ′).

Example 2. The numbers shown in Figure 2 are a weight assignment. These are the
actual weights defining the discriminant function d+ we would learn using the method
described in Section 4 for this TET, assuming that m1 and m2 of Figure 1 are given as
a negative and positive example, respectively.

Now consider the value γ1 = V (T (m1)) as shown on the left in Eq. 1 and explained
in Example 1. The (simplified) inner values {a : j,¬a : k} ∈ V(T (2)) have the dis-
criminant value

d(a : j,¬a : k) = 0.375 ·
(

0.222
0.375

0.5
0.222

)j ·
(

0.222
0.375

0.181
0.222

)k

= 0.375 ·
(

0.5
0.375

)j ·
(

0.181
0.375

)k
.

This leads to

d(γ1) = 0.5 ·
(

d(a:1,¬a:3))
0.5

)2 (
d(a:0,¬a:3))

0.5

)(
d((a:0,¬a:2))

0.5

)
= 0.5 ·

(
0.375
0.5

)4 · ( 0.5
0.375

)2 · ( 0.181
0.375

)11
.
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Similarly for γ2 = V (T (m2)):

d(γ2) = 0.5 ·
(

0.375
0.5

)3 · ( 0.5
0.375

)2 · ( 0.181
0.375

)2
.

Intuitively, we can interpret this discriminant function as follows: because in the training
data the positive example had a smaller cast than the negative example, the discriminant
function multiplies the marginal probability of the positive class (0.5) for each actor in
the cast with a penalty term 0.375

0.5 < 1. Furthermore, since in the negative example the
actors in the cast appeared in a larger number of movies than in the positive example,
another penalty factor 0.222

0.375 < 1 is added for every associated movie of any actor in
the cast. Finally, a factor of 0.5

0.222 > 1 is added for every associated award movie, and a
factor 0.181

0.222 < 1 for every non-award movie (cancelling out the 0.222 terms).

4 TET Learning

We first describe in more detail the learning problem we want to solve. Our data con-
sists of a modelM in the sense of Definition 1. In our implementation,M is given as
a relational database containing one table for each r ∈ R, where the table for r con-
tains all tupels a ∈ M arity(r) for which I(r(a)) = true. Furthermore, we are given an
initial target table, i.e. a table consisting of a set of examples with +/− class labels.
For example, a learning problem given by the data depicted in Figure 1, and m1, m2

as a negative and positive example, respectively, would be given by the 4 leftmost ta-
bles in Table 4. Columns in the data tables are headed by synthetic identifiers Argi.
Columns in the target table (other than the class label column) are headed by variable
names, which will then become the names of the free variables in the TET we con-
struct. Thus, given the input we will want to construct a TET T (v) over the signature
R = {movie, cast, award} that captures features of v that are predictive for the class
label given in target.

Note that in this representation of the learning task it is not visible that the class we
want to predict is actually the award relation. Such a representation is appropriate, for
example, when we have temporally stratified data, and the task is to predict for current
movies m1, m2 whether they will receive an award – a prediction for which we may use
the award label of older movies m3, . . . , m19 (this is the scenario we have in our IMDB

Table 1. Data and Target Tables

Arg1
m1

m2

...
m19

movie

Arg1 Arg2
m1 a1

m1 a2

...
...

m19 a7

cast

Arg1
m4

m8

m17

m18

award

v Label
m1 −
m2 +

target

Input data

v w Label
m1 a1 −

...
...

...
m1 a4 −
m2 a5 +
m2 a6 +
m2 a7 +

target

Local target
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experiment, Section 5). For prediction problems without such a stratification, notably
when for the prediction of any object’s class label one may use the class label of all
other objects in the domain, the target table will essentially duplicate the class table (in
our example, the award table would also contain m2, and the target table would contain
all movies, correctly labeled + or −). In such a case suitable syntactic constraints can
be imposed in the TET construction that prevent the construction of “illegal” features
(award(v) as a feature for predicting the class of v).

Our general approach to TET learning is a recursive top-down construction that as-
sociates with each node a local discrimination task represented by a local target table.
This makes our approach somewhat related to decision tree learning. In a fundamental
difference to decision tree learning, however, it will generally not be the case that the
target tables of child nodes partition the target table of their parent. In our running ex-
ample, if starting with the input data in Table 4 we initially constructed the extension
movie(v) w cast(v, w), then we would associate with the node cast(v, w) the local
target table shown on the right of Table 4. Rather than a reduction of the discrimina-
tion task to a smaller set of examples, as in decision tree learning, the construction of
this new target table amounts to a problem transformation: the problem of predicting
the label of a movie is transformed into predicting the label of movie/actor pairs in the
new target table, which may be effected by taking into consideration attributes of both
movies and actors, as well as additional relations between actors and movies (if any
such exist in the data).

The exact specification of the construction of local target tables is as follows. Let n
be a TET node associated with a local target table ttn(v, L) with columns for variables
v and label L. Let n′ be a child of n labeled with type σ(v, w), and reached by an edge
labeled with variables w (we include the possibility that w is the empty tuple, i.e. the
edge is really unlabeled). Then n′ is associated with a target table ttn′ with columns for
v, w and L, defined as:

ttn′(v, w, L) = {(a, b, l) ∈M |v|+|w| × {+,−} : (a, l) ∈ ttn;M |= σ(a, b)}. (3)

When building the TET we score candidate extensions based on a generalized informa-
tion gain (gig) measure, which is a function of the old and new target table. The gig
measure plays a central role in our TET learning method, and is more fully discussed in
Section 4.1 below. In addition to gig scoring of candidate extensions (which is a local
score for one node and a child), our learning method is driven by a global evaluation
of the current full TET structure based on the accuracy of this TET in conjunction with
the chosen classification model. In our implementation this is the discriminant function
model. Using a different type of TET-based classifier (e.g. an SVM based on a TET-
kernel) could obviously lead to different results in the TET learning. Thus, the TET
learner does not perform “pure” feature discovery; rather, it constructs features that are
useful in combination with a discriminant function classifier. However, our experimen-
tal results (Section 5) indicate that the features we obtain are not highly biased towards
this particular classification model.

Table 2 shows the general structure of our TET learning method. The method is
essentially implemented as a node constructor, that receives as arguments the data, a
target table tt to be classified, a pointer r to the root of the TET in which this node is
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Table 2. TET learning

TET node(DataM, Labeled table tt, TET node r, Type τ (v))
1. this.type = τ (v)
2. this.weight = positive class frequency(tt)
3. TET node root
4. if (r=null) root=this else root=r
5. current score = predictive score(root)
6. EXT :=possible extensions(root,this)
7. for all σ(v, w) ∈ EXT compute gig(tt, σ(v, w))
8. CAND:= candidate extensions(EXT,gig-values)
9. for all σ(v, w) ∈ CAND
10. tt′ = construct tt(M, tt, σ(v, w))
11. add as child c = TET node(M, tt′, root, σ(v, w))
12. new score = predictive score(root)
13. if new score − current score < threshold
14. delete c
15. else current score=new score

constructed, and the type τ(v) with which the node is to be labeled. A TET is learned
by the call

root of learned TET = TET node(M, tt, null,�(v))

(because of initialization issues, all our TETs have the vacuous type �(v) in the root).
The construction works as follows: Line 1 labels the node under construction with

its type. Line 2 sets the weight for the discriminant function d+ for this node. It is
just the relative frequency of positive examples in the target table associated with this
node (the weight for d− being one minus this weight). Thus, the discriminant function
here is learned (at little extra cost) in parallel with the TET construction. If a different
classification model was used for the TET construction, then line 2 would be omitted.
Lines 3-4 set a local root variable pointing to the root of the TET under construction.

The function predictive score called in lines 5 and 12 performs the global evaluation
of the current TET based on its predictive performance in conjunction with the chosen
classification model. If a model other than the discriminant function here is used, then
calls to predictive score may require computationally expensive model training for the
current TET.

Lines 6-8 are crucial: here a subset of all the possible extensions of the current node is
constructed for further exploration. This operation is analogous to refinement operators
in ILP. Our construction is in two steps: in the first step the set of possible extensions
for the current node is constructed by the function possible extensions. This function
can implement various constraints and a language bias. In our implementation, we re-
strict possible extensions to contain only one literal, and to introduce at most one new
variable. The function can also take TILDE-style user-defined rmode declarations, that
can force certain arguments of the new literal to be filled with variables already present
in the parent node (input variable), or with a new variable introduced by this extension
(output variable). In all our experiments we use rmode declarations that force the argu-
ment of any unary relation to be an input variable. Furthermore, possible extensions is
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used to implement a termination condition: if the depth of the current node in the TET
has reached a (user specified) maximum depth, then possible extensions will return an
empty set. In a second step, the generalized information gain is computed for all pos-
sible extensions; the function candidate extensions then performs a selection based on
gig values. Our current implementation of candidate extensions selects all extensions
whose gig value exceeds user defined thresholds (we use different thresholds depending
on whether a candidate extension introduces a new variable; the gig values for these two
types of extensions are incomparable, see Section 4.1).

For each candidate extension then a child node is created. The function construct tt
constructs the local target table for the child according to (3). After line 11 is executed, a
whole new subtree is rooted at the new node c. Lines 12-15 then evaluate the extension
of the old TET with this new subtree, and either accept or reject the subtree based on a
user defined threshold for the required global score improvement.

4.1 Generalized Information Gain

To select promising candidate extensions in lines 7-8 of the TET learner, we use a gen-
eralized information gain measure that we now introduce. Given is a TET node labeled
with a target table tt(v, L). We distinguish extensions with unlabeled and labeled edges,
which we also call condition introductions and object introductions, respectively.

In a condition introduction we add a child node labeled with a type σ(v) that puts
additional constraints on the tuples in tt(v, L), and the new target table obtained from tt
and σ(v) via (3) is just a subset of tt. We denote this sub-table ttσ(v). Let H(tt) denote
the entropy of the class label distribution in tt. Standard information gain

ig(σ(v)) := H(tt)−
|ttσ(v) |
|tt | H(ttσ(v))−

|tt \ ttσ(v) |
|tt | H(tt \ ttσ(v)) (4)

can therefore be used to measure the informativeness of a candidate condition
introduction.

When evaluating candidate object introductions, we have to consider two different
aspects: first, extending a node in the current TET by an object introduction refines
the feature represented by the TET and modifies the discriminant function, which may
directly lead to improved predictive performance. In this case we say that the object
introduction is directly informative. Secondly, an object introduction can be potentially
informative when the problem transformation represented by the new target table en-
ables additional strategies for discriminating between positive and negative examples.

To illustrate these two aspects, consider the candidate extension w cast(v, w) of the
root �(v) for the data in Table 4. This extension introduces the number of actors in
a movie as a feature. Since in the data movies in the positive class have fewer actors
than movies in the negative class (i.e. there is degree disparity [8]), this extension is
directly informative. Note that due to the fact that every movie has at least one actor,
cast(v, w) is a non-discriminating relation [4] for standard ILP systems without ag-
gregation functions. The extension also is potentially informative, because, as the new
local target table indicates, movies in the positive class have different actors in their cast
than movies in the negative class, and therefore the classes can also be distinguished if
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we succeed in separating the two sets of actors by subsequent extensions of the new
cast(v, w) node.

Our goal is to find an evaluation measure for both the direct and potential informa-
tiveness of a candidate object introduction w σ(v, w). Measuring the potential infor-
mativeness serves similar goals as lookahead [2,4] in ILP systems, but differs in that
it tries to achieve this goal by considering only one-step extensions (i.e. single literals
in the context of our learner), rather than the combinatorial search space of possible
multi-step refinements.

Consider a specific tuple of objects a that can be substituted for the variables w
in σ(v, w). Then we can consider σ(v, a) as a condition introduction (it imposes on
the tuples in tt(v, L) the condition of being related to the fixed objects a in the way
specified by σ(v, a)), and we can measure ig(σ(v, a)) according to (4). If objects a are
either mostly associated with v’s from the positive class, or with v’s from the negative
class, then ig(σ(v, a)) will tend to be larger than when no such association exists. If
this association exists for a significant proportion of tuples a, then this will be reflected
in the generalized information gain defined as

gig(σ(v, w)) :=
1

|bindings(w) |
∑

a∈bindings(w)

ig(σ(v, a)),

where bindings(w) is the set of tuples of objects that can be substituted for w. The val-
ues one obtains for gig(σ(v, w)) must be interpreted with some care: in most situations
|ttσ(v,a) |/|tt | will be small for all a, and therefore also gig(σ(v, w)) will be a small
number. It therefore does not make sense to compare gig(σ(v, w)) against the informa-
tion gain ig(σ(v)) of a simple condition introduction. However, gig(σ(v, w)) provides
a meaningful measure to compare several candidate object introductions against each
other.1

So far, we have motivated gig by its ability to measure the potential informativeness
of an object introduction. However, direct informativeness from degree disparity, too,
will increase gig: when v’s in the positive class, on average, have more associated w’s
than v’s in the negative class, then, conversely, for many a’s in bindings(w) the distri-
bution of v’s within ttσ(v,a) must show a higher proportion of the positive class than
in the base table tt. This leads to higher values of ig(σ(v, a)), for many a’s, and thus a
higher value of gig(σ(v, w)).

5 Experiments

Our experiments focus on the capability of TET learning as a feature discovery method.
We are interested in whether the TET learner will produce known relevant and/or new
useful and interpretable features. We also investigate the predictive performance of the
learned TETs in conjunction with the discriminant function classifier. We compare
the TET learner with a range of other relational learning systems: relational proba-
bility trees [11] as implemented in the Proximity system (kdl.cs.umass.edu/proximity),

1 gig in Table 2 refers to either gig when object introductions are scored, or standard ig for
scoring condition introductions.
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TILDE [3] (a relational decision tree learner driven by traditional info-gain), and the
Alchemy system (alchemy.cs.washington.edu) for Markov Logic Networks [15].

Slotchain data (synthetic). An important type of relational features consists of at-
tribute values of other objects that are reachable via a certain sequence of relations,
also called slotchain. The challenge posed by slotchain features lies in the fact that they
consist of a conjunction of literals, none of which is informative individually. Thus,
slotchain features are useful prototype features for testing the effectiveness of tools like
lookahead or our generalized information gain.

We generated data representing slotchain dependencies as follows: the domain con-
sists of 300 objects each of 3 different types type0, . . . , type2. Between objects of type
i and i + 1 (i = 0, 1) 2 different binary relations reli,k (k = 0, 1) are generated by ran-
domly selecting for each object o of type i exactly 2 distinct objects as reli,k-successors.
Objects of type type2 have a boolean attribute att. Objects of type type0 have a class la-
bel class. The probability that o ∈ type0 is in the positive class is 0.8 if o is connected
via the chain of relations rel0,0, rel1,0 to an object o′ ∈ type2 with att(o) = true; and
0.1 otherwise. The att relation is true for o′ ∈ type2 with probability 0.2. The relevant
feature for predicting the class label therefore is

�(v) w0 rel0,0(v, w0) w1 rel1,0(w0, w1) att(w1)

The TET learner returned the weighted TET

�(v)
(0.57)

rel0,0(v, w1)
(0.57)

w1

rel0,0(w2, w1), w2 �= v
(0.6)

w2

rel1,0(w1, w3)
(0.57)

w3

att(w3)
(0.74)

While this TET contains a spurious branch apart from the correct feature, this branch
does not contribute much to the discriminant function, because the weight of its root is
very close to the weight of the root’s parent. This weighted TET achieves a predictive
accuracy of 0.86 and AUC(ROC) value of 0.87 on a test set.

A comparison with the Proximity implementation of relational probability trees
(Prox-RPTs) is made difficult by the fact that Proximity does not operate directly on
the relational database, but on set of examples consisting of small subgraphs of the full
data graph. These subgraphs have to be constructed by a user-defined query, the formu-
lation of which already amounts to a large part of the feature discovery process. Queries
are formulated in a language of graph patterns. To retrieve suitable subgraphs for the
slotchain learning task, we used the query

V1 V2 V3
e2e1

[1..] [1..]

[0..] [0..]type0 = true

This query retrieves for every object o ∈ type0 the subgraph consisting of all nodes and
edges that are at most two steps away from o. The feature language employed by Prox-
RPTs uses count and aggregation operators for attributes of node and edge elements
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in the query graph. The RPT we obtained had in its root the feature prop(V3.att =
true) ≥ 0.875, and similar features referring to V3.att in its other nodes. Thus, while
the Prox-RPT learner determined the relevance of the att attribute in nodes two steps
away, it did not refine this in terms of the exact slotchain by which these nodes are
reached. Accuracy (0.65) and AUC(ROC) (0.633), therefore, were much lower than in
the TET-based model.

TILDE without lookahead, as expected, was unable to learn the slotchain (it returns
the empty clause). Only when the correct slotchain is given as a user-defined lookahead
clause, can this feature be learned.

Alchemy structure learning did not terminate on the slotchain data within 6 hours
(whereas the TET learner took about 30 seconds, and Proximity less than 10 seconds).
However, Alchemy tries to solve the much harder task of learning a full generative
model for all relations in the data, rather than a predictive model for the class attribute.

IMDB. Our second experiment uses the real world Internet Movie Database (IMDb).
In our experimental setup we follow [10]. The problem is to predict whether a movie
will earn more than $2 million in its opening weekend (expressed by a receipts class la-
bel). Available data includes attributes of movies, e.g. a genre attribute, binary relations
between movies and actors, movies and producing studios, and movies and directors,
as well as an award attribute of actors. Movie data from 5 successive years 1996-2000
was used, and the 4 separate prediction problems for the class labels of movies from
the years 1997,. . . ,2000 were considered. When classifying movies from a given year,
then the receipts label of movies from the preceding year is available. In all 4 versions
of the experiment we obtained quite similar TETs, a representative one being

�(v)

thriller(v)

studio(s, v)
s

studio(s, w)
w

¬thriller(v)

T1(v)

studio(s, v)
s

studio(s, w)
w

receipts(w) ¬receipts(w)

cast(a, v)
a

Because of space limitations, the subtree T1(v) here is not shown. It consists of further
condition introduction nodes (10 in total) testing different genre attributes of movies.
The most interesting feature encoded by this TET (which is present in all 4 versions
of the experiment) is the third branch from the left, which counts the receipt attribute
values among the movies produced (in previous years) by the same studio as the movie
to be classified. Interestingly, this is essentially the underlying count statistic of the
feature that Neville and Jensen [10] obtain at the root of a relational probability tree
they construct for the same classification problem:

Studio Movie Prop(receipts = y) > 0.6

The TETs we construct, together with the simple discriminant function as the clas-
sification model, yields accuracy results (84.4, 78.8, 80.7, and 86.4%, respectively, for
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the 4 different years) which are competitive with the results reported by Neville and
Jensen.

CORA. Our third experiment uses the CORA citation data. We consider the entity
resolution problem as investigated by Singla and Domingos [15]; we use the dataset
available at alchemy.cs.washington.edu. The predictive tasks are to decide whether
two strings found in the author, respectively venue field in two different bibliographic
entries refer to the same entity, and whether two different bibliographic entries re-
fer to the same paper. Types of objects in the database include author, venue, bib,
word,. . . Available relations include the binary relations hasWordVenue(v, w) represent-
ing that venue v contains the word w, bibToVenue(b, v) representing that bibliographic
item b contains v in the venue field, and similar relations for the fields ’author’
and ’title’.

We ran the TET learner on each of the 5 different training sets defined by a 5-fold
division of the source data. In all 3 tasks the TETs constructed over the different folds
exhibited a quite stable structure, with some branches being present in all folds. A
representative TET for the venue resolution task is shown at the left in Figure 3.

The left branch (which was constructed in all 5 runs) represents a central feature
for entity resolution: whether two entities (i.e. strings) are the same depends on the
number of words that appear in both of them. This simple fact is called reverse predicate
equivalence in [15], and hand-coded into the prediction model via logical axioms of the
form

hWV(v1, w) ∧ hWV(v2, w) => sameVenue(v1, v2)

The right branch first introduces the bib-entries that have the string v1 in the venue
field). The left sub-branch tests whether b1 also contains v2 in the venue field. In effect,
this is a test whether v1 and v2 are identical strings – an obvious feature to consider, yet
one that is not expressible in a more straightforward manner with the given relational
vocabulary! The right sub-branch introduces the title of the bib entry b1, and then counts
the number of bib-entries b2 that also have this title, and that contain venue v2 in the
venue field. In effect, this whole branch represents a feature that considers how often
v1 and v2 appear in bib-entries b1, b2 that have the same title.

�(v1, v2)

hWV(v1, w)
w

hWV(v2, w)

bTV(b1, v1)
b1

bTV(b1, v2) bTT(b1, t)
t

bTT(b2, t)
b2

hTV(b2, v2)

�(p, r)

within 5(p, r, r1)

r1

consCYS(p, r1)

within 5(p, r1, r2)

r2

consXXX(p, r2) consYYY(p, r2)

Fig. 3. TETs for Venue resolution (left) and metal binding sites (right)
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For the three prediction tasks, author resolution, venue resolution, and bib-entry res-
olution, we achieved with our weighted TETs AUC(PR) values of 0.987, 0.771, 0.938,
respectively (micro-averaged over the 5 folds). This is slightly better for author and
venue than the values 0.980, 0.743, 0.971 reported in [15] for a Markov Logic Network
model that (like our TET) is language independent, i.e. does not contain rules referring
to specific strings occurring in the data. The worse performance on Bib can probably be
explained by the fact that [15] perform multi-task classification, and that Bib resolution
benefits more from the multi-task setting than Author and Venue (there is no direct evi-
dence for two Bibs being the same: they tend to be the same if their authors and venues
are the same).

Metal binding sites. In our last experiments we predict metal binding residues in pro-
teins, using sequence information only. Metal ions are essential for Life, performing
structural, catalytical and regulatory roles in the cell. About one third of the known pro-
teins is believed to bind metal ions in their native conformation. A single metal ion is
typically coordinated by a number of residues ranging from one to eight, each metal
having a preferred coordination number and a range of possible alternatives. The most
common metal ligands are CYS and HIS, followed by ASP and GLU which are how-
ever far more abundant in proteins. Metal binding sites typically show many regularities
in terms of number, type, and distance of ligands and surrounding residues. Biologists
have tried to encode such regularities in motifs identifying specific metal binding sites,
as well as other biologically relevant portions of proteins. PROSITE [6] motifs con-
sist of either regular expressions or position-specific profiles with amino acid weights
and ggvgap costs. The former are extremely specific but have a very low recall, the
latter show a more balanced precision/recall ratio but their performance is still rather
unsatisfactory. While providing interpretable explanations, such motifs fail to capture
much of the information provided by the sequence, especially when enriched by evolu-
tionary information in the form of multiple alignment profiles, as shown by the perfor-
mance achieved by a supervised learning architecture [12] fed by such inputs. Our TET
learning algorithm discovered relevant and interpretable combinatorial features that out-
perform the knowledge-based regular expressions defined in PROSITE. Furthermore,
counts-of-counts capabilities indeed provide additional discriminative power, as shown
by experimental comparisons with Tilde and with TETs based on regular expression-
like features only.

We learned two separate TETs for CYS and HIS respectively. Objects in the domain
consist of proteins and residues within proteins. Residue attributes are extracted from
multiple alignment profiles, and consist of the binarized conservation of either rele-
vant residue types such as CYS, HIS, ASP, GLU or PRO, or relevant residue classes
such as small, hydrophobic or negative. Relations have the form Within n(p,r1,r2) and
Plus n(p,r1,r2), and represent pairs of residues (r1,r2) in a certain protein p whose
sequence separation is at most or exactly n, respectively. Note that despite their simi-
larity, these two types of relations express quite different features: once one of the two
residues is given, Plus n(p,r1,r2) is satisfied by at most one other residue, and will thus
lead to regular expression-like features similar to PROSITE patterns (but typically less
specific). On the other hand, Within n(p,r1,r2) allows to collect all residues in the neigh-
bourhood of a given residue, and naturally generates counts-of-counts types of features.
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Table 3. Microaveraged area under the ROC curve (%) for CYS and HIS metal bonding state
prediction

Task TETfull TETregexp PROSITEmotifs PROSITEpatterns TILDE SVM-BRNN
CYS 85.6±0.8 81.6±0.9 76.5±0.9 64.4±1.0 83.8±0.8 93.2±0.6
HIS 80.1±1.0 77.7±1.1 67.3±1.2 60.5±1.2 71.1±1.1 88.6±0.8

We ran a five-fold cross validation procedure on the same folds employed in [12].
Table 3 reports microaveraged area under the ROC results for TET with (TETfull)
and without (TETregexp) the Within n(p,r1,r2) relation, PROSITE patterns and mo-
tifs and TILDE, as well as the state-of-the-art performance for this task [12]. Figure 4
reports significance of performance difference between learners, computed by a two-
tailed Hanley-McNeil test [16] on areas under the ROC curve. TILDE was run with the
same declarative bias used for learning TETs (rmode declarations that set one of the
residues in Plus n and Within n relations to input, and the other to output). However, it
was unable to exploit the Within n(p,r1,r2) relations, which are non-discriminating re-
lations [4] as any residue has at least one neighbour, while Plus n(p,r1,r2) relations hap-
pen to be slightly discriminant as residues at sequence boundaries do not satisfy the rela-
tion and are typically non-binding residues. Forcing TILDE to explore Within n(p,r1,r2)
relations by extensive lookahead produced worse results and increased computational
costs. Area under the ROC results for TILDE were calculated assigning to each example
the probability of binding of the leaf node which classified it.

The best reported performance for this task (93.2% and 88.6% AUC for CYS and
HYS, respectively) was previously obtained with SVM-BRNN, a highly engineered
architecture based on support vector machines and bidirectional recurrent neural net-
works, fed by amino acid windows [12]. However, predictions obtained by such an
architecture are not interpretable. While the TET-based classifier does not reach the
same levels of accuracy, it significantly outperforms annotations curated by experts and
effectively suggests novel and more compact explanations: TETs produced by our learn-
ing algorithm had 22 nodes on average, while there are 467 PROSITE patterns and 305
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Fig. 4. Significance of performance difference between learners for the MBS data set. A black
(grey) box indicates that the learner on the row is significantly better than that on the column at
p=0.05 (p=0.1).
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position-specific profiles that match at least one residue in the dataset. Counts-of-counts
features do contribute to the overall TETs performance, as shown by the improvements
over TILDE and TETs which rely on regular expression-like features only.

Figure 3 (right) shows a TET structure learned for CYS. Inspecting the structure, we
note that the first branch learned in all folds encodes counts-of-counts features explor-
ing the surrounding of the candidate residue, where XXX and Y Y Y can be: HIS or
negative identifying candidate co-ligands (ASP and GLU are both negatively charged);
polar or positive identifying hydrophilic residues, an indication that the region is ex-
posed to the exterior and thus apt to contain a binding site; small as small residues often
provide the needed flexibility for the 3D conformation of the site. A similar branch is
learned most of the time for the left context of the target residue too. Note that by con-
catenating the relation within 5 twice, learned TETs manage to explore a wide context
of the target residue. Empirical evidence in [12] shows that wide contexts (in a range
of up to 15 residues) are useful for accurate prediction. Branches encoding standard
regular expressions such as CXXC (two CYS separated by any two residues) are added
at the latest stages only, i.e. they only play a minor refinement role.

The learning experiments reported here took in the range of 30 seconds (slotchain)
and 19 hours (Bib-resolution; per fold) to complete on an Intel Xeon 3.2 GHz platform,
with metal binding sites (3 h) and venue resolution (5 h; per fold) in between. By far
the most time is spent on data retrieval from the underlying MySQL database.

6 Conclusion

The TET language is a very simple yet highly expressive language for representing fea-
tures in relational data. Unlike previous feature representation frameworks a TET repre-
sents raw count of count statistics, not simple numeric or Boolean features obtained by
aggregation of such counts. Our current TET implementation is restricted to Boolean
attributes and relations only. However, on the representational, semantic level, there is
no problem with extending the TET framework to multi-valued and numeric datatypes.
However, numeric data poses additional challenges for transforming the complex TET
values into more manageable, condensed features that then can be used in standard
predictive models.

We have defined a discriminant function that enables prediction directly on the basis
of TET values. Using this discriminant function and a new generalized information
gain measure, we have developed a TET learner that in our experiments has been able
to discover relevant and interpretable features in a variety of learning settings that differ
significantly both with regard to the structure of the data, and the type of learning task.

The discriminant function we used in this paper is motivated by its grounding in clas-
sical prediction models, and the fact that it is easy to learn and evaluate, which makes it
suitable for use in a wrapper evaluation procedure. In spite of its simplicity, we achieve
with the discriminant function in our experiments predictive performance that is com-
petitive with other state-of-the-art models, and sometimes (Cora) outperforms mod-
els that have been built using hand-coded domain knowledge. It must be emphasized,
though, that the TET feature language is not tied to this discriminant function. Future
work, therefore, will be directed towards constructing refined TET-based classification
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models using tools for collective and multi-task classification, as well as integrating
TET features into other existing supervised learning techniques, e.g. kernel methods or
relational probability trees. Also, in future work, we will further investigate “relational”
information gain measure (our gig at this point being a somewhat ad-hoc solution) in
order to obtain better theoretical justifications for the current gig, or improved versions
thereof.
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Abstract. It has repeatedly been found that very good predictive mod-
els can result from using Boolean features constructed by an an Induc-
tive Logic Programming (ILP) system with access to relevant relational
information. The process of feature construction by an ILP system, some-
times called “propositionalization”, has been largely done either as a
pre-processing step (in which a large set of possibly useful features are
constructed first, and then a predictive model is constructed) or by
tightly coupling feature construction and model construction (in which
a predictive model is constructed with each new feature, and only those
that result in a significant improvement in performance are retained).
These represent two extremes, similar in spirit to filter and wrapper-
based approaches to feature selection. An interesting, third perspective
on the problem arises by taking search-based view of feature construc-
tion. In this, we conceptually view the task as searching through subsets
of all possible features that can be constructed by the ILP system. Clearly
an exhaustive search of such a space will usually be intractable. We re-
sort instead to a randomised local search which repeatedly constructs
randomly (but non-uniformly) a subset of features and then performs a
greedy local search starting from this subset. The number of possible fea-
tures usually prohibits an enumeration of all local moves. Consequently,
the next move in the search-space is guided by the errors made by the
model constructed using the current set of features. This can be seen
as sampling non-uniformly from the set of all possible local moves, with
a view of selecting only those capable of improving performance. The
result is a procedure in which a feature subset is initially generated in
the pre-processing style, but further alterations are guided actively by
actual model predictions. We test this procedure on language processing
task of word-sense disambiguation. Good models have previously been
obtained for this task using an SVM in conjunction with ILP features
constructed in the pre-processing style. Our results show an improve-
ment on these previous results: predictive accuracies are usually higher,
and substantially fewer features are needed.

1 Introduction

Most machine-learning techniques for constructing models from sample data are
feature-based. By this, we mean that they expect data in which objects are

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 140–157, 2008.
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encoded as vectors of values for a pre-specified set of attributes or features, with
the object of the model often being to predict the value of one of these features
using the values of the others.1 One machine-learning approach that clearly does
not fit into this category is Inductive Logic Programming (ILP), which deals
instead with learning from instances of objects represented in a relational form.
For example, suppose we are concerned with building models for identifying
toxic chemicals. An appropriate relational representation may be the atoms in
the chemical, their location in 3-dimensional space, the bonds amongst them, the
different structural and functional group locations (benzene rings, methyl groups
etc.) and so on. A feature-based representation, on the other hand, may use the
bulk properties of the chemical (its molecular weight, the number of atoms of
a particular type etc.), some structural features (the presence of fused benzene
rings, for example), and so on. ILP systems are able to construct models using
the former representation, while methods like decision trees, neural networks,
support vector machines require the latter.

Despite an ILP system’s ability to handle more complex representations, there
has long flourished a somewhat heretical strand of ILP activity that has sought
to convert (in some efficient manner) the relational representation into a feature-
based one, with a view of using well-established feature-based model construction
methods. While a theoretical case could be made for some of this work—positive
learnability results for specific forms were shown nearly 15 years ago by Dzeroski
et. al [16]—the primary motivations have been practical. First, feature-based
model constructors are computationally efficient. Second, with appropriate fea-
tures, they are able to construct significantly complex predictive models. Third,
both data analysts and domain experts alike are more familiar with these meth-
ods than they are with ILP. This form of model construction, with an ILP system
providing some or all of the features, and a feature-based learner constructing the
actual model has repeatedly been shown to be remarkably effective (see [2,17,18]
for some examples).

If we are indeed committed to using a feature-based learner, then a case can be
made for ILP as a natural choice for the automatic construction of new features,
if the relational information can be encoded in a logical form. The techniques
essentially fall into one of two categories: those that construct features inde-
pendent of the subsequent model-constructor; and those that inter-leave feature
and model-construction. The earliest example of the former is LINUS [1], that,
given a set of relations, constructed all features possible within some syntactic
restrictions. Essentially a similar idea, but using a much more efficient tech-
nique for generating the features is executed by [3]. Also in the same category
are approaches like those exemplified by [19], which impose additional seman-
tic constraints on the features (using modern terminology, these constraints ef-
fectively place minimum requirements on the support and confidence values).
The inter-leaved approach sequentially builds up a set of features, in a manner

1 The terminology, from statistical modelling, of predicting a dependent variable using
a set of independent variables is related, but we avoid it here, since independence
amongst the features is often not as apparent.
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similar to forward-selection techniques used by a statistical model constructor.
That is, features constructed by the ILP engine are given one at a time to the
model constructor, and only those that actually improve predictive performance
are retained. The k-FOIL system [4] and the SAYU procedure proposed in [5]
are recent examples of this. The reader will recognise that the two approaches
are similar in spirit to filter and wrapper-based approaches to feature selection
[20]: the difference being, of course, that we do not already have the features to
select from here.

There is an interesting, third perspective to be gained by accepting the fact
that what is being done is actually a search for the best subset of features that
can be constructed by an ILP engine. Clearly, for any realistic problem, this space
would be too large to search exhaustively. In this paper, we examine instead the
use of a well-established method of randomised search for exploring this space.
There are three specific advantages we gain from adopting this perspective: (1)
Randomised search techniques, although not provably optimal, have been shown
to be very effective in searching extremely large searce spaces. We are now able
to apply them to the task of feature construction; (2) The pre-processing and
inter-leaved forms of feature construction can be seen as special cases of a ran-
domised algorithm searching through the feature-subset space; (3) We are able
to understand better some of the steps of feature construction in terms of gen-
erating a non-uniform sample of local moves for the randomised search. In this
paper, we implement the simplest form of randomised search inspired by the
GSAT algorithm [21], and investigate its performance on language processing
tasks for which ILP-constructed features (generated in the pre-processing style)
have been found to be useful.

The rest of the paper is organised as follows. Section 2 formulates feature-
construction by an ILP engine as a search process. The use of a randomised
local search procedure to execute this search is described in Section 2.1. The
basic procedure is usually impractical to use directly. Modifications to the ba-
sic randomised procedure in the form of using the errors made by the model-
constructor to guide sampling of local moves are in Section 2.2. We examine the
possibility of reducing the computational burden further by using models that
assign weights to features. This is described in Section 2.3. An empirical evalu-
ation of the approach for the word-sense disambiguation problems is presented
in Section 3. Section 5 concludes the paper.

2 Feature Construction as Search

We motivate the approach we propose using the “trains” problem, originally
proposed by Ryzhard Michalski. The task, familiar to many readers, is to con-
struct a model that can discriminate between eastbound and westbound trains,
using properties of their carriages, and the loads carried (see Fig. 1).

We will assume that the trains can be adequately described by background
predicates that will become evident shortly. Further, let us assume that the 10
trains shown in the figure are denoted t1, t2, . . . , t10 and that their
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Fig. 1. The trains problem. Trains are classified either as “eastbound” or “westbound”.
They have open or closed carriages of different shapes, lengths, and so on. The carriages
contain loads of different shapes and numbers. The task is to construct a model that,
given the description of a train, can predict whether it will be eastbound or westbound.

classifications are encoded (in the Prolog language) as a set of examples of the
form: class(t1, eastbound), class(t2, eastbound), . . ., class(t10, westbound). As
is quite normal in the use of ILP for feature-construction, we will assume fea-
tures to be Boolean valued, and obtained from some clause identified by the ILP
program. For example, Fig. 2 shows five such features, found by an ILP engine,
and the corresponding tabular representation of the 10 examples in Fig. 1.

Suppose that these 6 features are the only features that can be constructed
by the ILP engine, and further, that it is our task to find the best subset of
these that can result in the best model. Clearly, if we simply evaluated models
obtained with each of the 63 subsets of the set {f1, f2, f3, f4, f5, f6} and return
the subset that returned the best model, we would be done. Now, let us consider

Fig. 2. Some Boolean features for the trains problem, and a corresponding tabular
representation of the trains in Fig. 1
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a more practical situation. Suppose the features that can be constructed by an
ILP system are not in the 10s, but in the 1000s or even 100s of 1000s. This would
make it intractable to construct models with all possible subsets of features. Fur-
ther, suppose constructing each feature is not straightforward, computationally
speaking, making it impractical to even use the ILP engine to construct all the
features in the first place. Are we able to nevertheless able to determine the sub-
set that would yield the best model (which we will now interpret to mean the
model with the highest classification accuracy). The problem to be addressed is
shown in Fig. 3.

Fig. 3. Identifying the best subset of features for a model-construction algorithm A.
The X-axis enumerates the different subsets of features that can be constructed by an
ILP engine (F denotes the set of all possible features that can be constructed by the
engine). The Y-axis shows the probability that an an instance drawn randomly using
some pre-specified distribution will be correctly classified by a model constructed by
A, given the corresponding subset on the X-axis. We wish to identify the subset k∗
that yields the highest probability, without actually constructing all the features in F .

Readers will recognise this as somewhat similar to the problem addressed by
a randomised procedure for distribution-estimation like Gibb’s sampling. There,
if the F features are given (or at least can be enumerated), then it is possible
to converge on the best-performing subset without examining the entire space
of 2|F| elements. Clearly, if we are unable to generate all possible features in F
beforehand, we are not in a position to use these methods. Instead, we resort
a randomised local search procedure inspired by a randomised procedure for
checking satisfiability of Boolean formulae.

2.1 A Randomised Local Search Procedure

Randomised local search procedures are some of the most effective methods
proposed for addressing the hard problem of determining the satisfiability of
propositional formulae. The basic search procedure embodied in a technique like
GSAT [21] is straightforward (Fig. 4, taken from [6]).
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(Here R and M represent the number of random restarts and moves allowed.)
This kind of search procedure has been adapted successfuly to the ILP problem

of identifying a set of clauses that, along with some background knowledge, entail
a set of examples [15]. Here, we examine its use for feature construction (Fig. 5).

Existing techniques for feature construction can be re-cast as special cases
of the procedure in Fig. 5, with appropriate values assigned to R and M ; and
definitions of a starting point (Step 3a) and local moves (Step 3(f)i). For example,
“LINUS-inspired” methods that use an ILP engine to construct a large number
of features independent of the model constructor can be seen as an instance of
the randomised procedure with R = 1 and M = 0. Some additional constraints
may be imposed on the “starting subset” selected in Step 3a, which could be
encapsulated in the distribution used for random selection. Any further selection
amongst features in this subset are then upto the model-constructor. On the
other hand, SAYU-like procedures can be emulated with R = 1 and large values
of M ; along with restrictions that force the search to start from an empty subset,
and local moves only to add a single feature at a time.

1. currentbest:= 0 (“0” is some conventional default answer)
2. for i = 1 to R do begin

(a) current:= randomly selected starting point
(b) if current is better than currenbest then currentbest:= current
(c) for j = 1 to M do begin

i. next:= best local move from current
ii. if next is better than currenbest then currentbest:= next
iii. current:= next

(d) end
3. end
4. return currentbest

Fig. 4. A basic randomised local search procedure

1. bestfeatures:= {}
2. bestaccuracy:= 0.0
3. for i = 1 to R do begin

(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(c) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin

i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy

(e) end
(f) for j = 1 to M do begin

i. nextfeatures:= best local move from currentfeatures
ii. nextmodel:= model constructed with nextfeatures
iii. accuracy:= estimated accuracy of nextmodel
iv. if accuracy > bestaccuracy then begin

A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy

v. end
vi. currentfeatures:= nextfeatures

(g) end
4. end
5. return bestfeatures

Fig. 5. The basic randomised local search procedure, adapted to the task of feature
construction
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We consider now the more general procedure shown. In this, R and M can
take on any value from the set of natural numbers (including 0). In addition,
the starting subset is assumed to be drawn using some distribution that need
not be known; and a local move is one that either adds a single new feature
to the existing subset of features, or drops a feature from the existing subset.
We are now immediately confronted with two issues that make it impractical to
use the procedure as shown. First, we have the same difficulty that prevented
us from using an enumerative technique like a Gibb’s sampler: generating the
local neighbourhood requires us to obtain all possible single-feature additions.
Second, for each local move, we need to construct a model, which can often be
computationally expensive. We address each of these in turn.

2.2 Reducing Local Moves Using Theory-Guided Sampling

In this section, we consider a modification of the search procedure in Fig. 5
that results in only examining a small sample of all the local moves possible
before deciding on the next move in Step 3(f)i. Ideally, we are interested in
obtaining a sample that, with high probability, contains the best local move
possible. Assuming there are no ties, and that the number of possible local
moves is very large, it would clearly be undesirable to select the sample using a
uniform distribution over local moves. We propose instead a selection that uses
the errors made by the model-constructor to obtain a sample of local moves.
As a result, features in the local neighbourhood that are relevant to the errors
are more likely to be selected. In some sense, this is somewhat reminiscent of
boosting methods: here, instead of increasing the weights of examples incorrectly
classified, the representation language is enriched in a way that is biased to
classify these examples correctly on subsequent iterations.

Recall that at any point, a local move from a feature-subset F is obtained
by either dropping an existing feature in F or adding a new feature to F . We
are specifically concerned with the addition step, since in principle, all possi-
ble features that can be constructed by the ILP engine could be considered as
candidates. We curtail this in the following ways. First, we restrict ourselves
to samples of features that are relevant to examples misclassifed by the model-
constructor using the current set of features F (by “relevant” we mean those
that are TRUE for at least one of the examples in error). Second, in our imple-
mentation, we restrict ourselves to a single new feature for each such example
(by “new”, we mean a feature not already in F ).2 The altered procedure is
in Fig. 6.

2.3 Reducing Models Constructed Using Feature Weights

Step 3(f)v although now considering fewer moves, still has to construct a model
for each move before deciding on the best one. For some model-construction
2 In the implementation, we select this feature using its discriminatory power given

the original set of examples.
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1. bestfeatures:= {}
2. bestaccuracy:= 0.0
3. for i = 1 to R do begin

(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(c) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin

i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy

(e) end
(f) for j = 1 to M do begin

i. F −:= set of feature subsets obtained by dropping a feature from currentfeatures
ii. Fnew:= sample of new features that are TRUE for errors made by currentmodel
iii. F+:= set of feature subsets obtained by adding a feature in Fnew to currentfeatures
iv. localmoves:= F − ∪ F+

v. nextfeatures:= best subset in localmoves
vi. nextmodel:= model constructed with nextfeatures
vii. accuracy:= estimated accuracy of nextmodel
viii. if accuracy > bestaccuracy then begin

A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy

ix. end
x. currentfeatures:= nextfeatures
xi. currentmodel:= nextmodel

(g) end
4. end
5. return bestfeatures

Fig. 6. The randomised local search procedure for feature construction, modified using
theory-guided sampling of local moves

methods, this may also be computationally too expensive. We examine the pos-
sibility of using feature weights to reduce the computational burden further.

The principal purpose of constructing and evaluating models in the local
neighbourhood is to decide on the best next move to make. This will neces-
sarily involve either an addition of a new feature to the existing set of features,
or the deletion of an existing feature from the current set of features. That is,
we are looking to find the best new feature to add, or the worst old feature to
drop (given the other features in the set, of course). Correctly, we would form
models with each old feature omitted in turn from the current set and each new
feature added in turn to the current set. The best model would then determine
the next move. Using a model-constructor that assigns weights to features al-
lows us to adopt the following sub-optimal procedure instead. First, we find the
feature with the lowest weight in the current model: this is taken to be the worst
old feature. Next, we construct a single model with all features (old and new).
Let us call this ”extended model”. The best new feature is taken to be the new
feature with the highest weight in the extended model. The procedure in Fig. 6
with this further modification is shown in Fig. 7. It is evident that the number
of additional models constructed at any point in the search space is now reduced
to just 3: the price we pay is that we are not guaranteed to obtain the same
result as actually performing the individual additions and deletions of features.

It is the randomised local search procedure in Fig. 7, with one small difference,
that we implement and evaluate empirically in this paper. The difference arises
from the comparison of models: in the procedure shown, this is always done using
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1. bestfeatures:=
2. bestaccuracy:= 0.0
3. for i = 1 to R do begin

(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(c) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin

i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy

(e) end
(f) for j = 1 to M do begin

i. Fnew:= sample of new features that are TRUE for errors made by currentmodel
ii. extendedmodel:= model constructed using currentfeatures and Fnew

iii. fworst:= feature in currentfeatures with lowest weight in currentmodel
iv. fbest:= feature in Fnew with highest weight in extendedmodel
v. F −:= set with feature subset obtained by dropping fworst from currentfeatures
vi. F+:= set with feature subset obtained by adding fbest to currentfeatures
vii. localmoves:= F − ∪ F+

viii. nextfeatures:= best subset in localmoves
ix. nextmodel:= model constructed with nextfeatures
x. accuracy:= estimated accuracy of nextmodel
xi. if accuracy > bestaccuracy then begin

A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy

xii. end
xiii. currentfeatures:= nextfeatures
xiv. currentmodel:= nextmodel

(g) end
4. end
5. return bestfeatures

Fig. 7. The randomised local search procedure for feature construction, modified using
theory-guided sampling of local moves and the use of feature-weights to reduce model
construction

estimated accuracies only. In our implementation, if estimated accuracies for a
pair of models are identical, then the model using fewer features is prefered (that
is, comparisons are done on the pair (A, F ) where A is the estimated accuracy
of the model and F is the number of features used in the model).

One final point is worth clarifying. This concerns how the procedure in Fig. 7
is to avoid over-fitting the data. There are three principal ways in which we
see this can be achieved: (1) Estimated accuracies of the model constructed, if
unbiased, should give the procedure a way of halting before over-fitting; (2) The
feature-constructor—here an ILP learner—can ensure that features have some
minimal support (in the data mining sense of the word); and (3) The model
constructor can perform some appropriate trade-off of fit-versus-complexity to
avoid over-fitting.

3 Empirical Evaluation

Our objective is to evaluate empirically the effectiveness of the approach based on
randomised search for feature construction. Specifically, we intend to compare
the performance of following two kinds of feature-construction techniques on
word-sense disambiguation problems in language processing, for which ILP-based
feature construction methods have been previously studied in the literature [2]:
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1. Features constructed prior to model construction. An ILP system first con-
structs all interesting features that are consistent with the constraints pro-
vided by the background knowledge. Models are then constructed using these
features. Any feature selection that may be necessary is done prior to model
construction.

2. Features constructed using randomised local search and theory-guided sam-
pling. This is the procedure we have described in this paper (specifically, the
one in Fig. 7). Models are constructed using the same model construction
procedure as above, but no separate step of feature-selection is done.

3.1 Materials

Data and Background Knowledge. We use two benchmark data sets for
Word Sense Disambiguation (WSD) problem introduced in [2] to investigate
the effectiveness of our proposed method. WSD is an important problem that
needs to be solved in many natural language tasks such as machine translation,
information retrieval, speech and text processing and so on. Although complete
descriptions of the data are available in [2], we describe them briefly here for
completeness.

Monolingual task. This data consist of the 32 verbs from the SENSEVAL-
3 competition [7]. SENSEVAL3 is a joint evaluation effort for WSD and
related tasks. We use all the verbs of the English lexical sample task from
the competition. The number of examples for each verb varies from 40 to
398 (average of 186). The number of senses varies from 3 to 12 with an
average of 7 senses. The average accuracy of the majority class is about
55%. The benchmark identifies 66% of the data that can be used for model
construction. The rest are used for testing models.

Bilingual task. This task consists of 7 highly ambiguous verbs in machine
translation from English to Portuguese. The sample corpus comprises around
200 English sentences for each verb extracted from a corpus of fiction books.
In that corpus, the number of translations varies from 5 to 17, with an
average of 11 translations. The average accuracy of the majority class is
about 54%.

In [2], 9 categories of background predicates were introduced. Of these, the
category B0 consists of some simple hand-crafted features. The background pred-
icates specifically of relevance to an ILP-based feature constructor are in cate-
gories B1–B8. These consist of: (B1) the local context of the verb in a sentence;
(B2) lemmas of 5 content words to the right and left of the verb, lemmatized by
MINIPAR [9]; (B3) part-of-speech tags of 5 content words to the right and left
of the verb (obtained using MXPOST [10]); (B4) subject and object syntactic
relations with respect to the verb, obtained from MINIPAR parses; (B5) collo-
cations with respect to the verb, of the form: 1st preposition to the right, 1st

3 www.senseval.org
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and 2nd words to the left and right, 1st noun, 1st adjective, and 1st verb to the
left and right; (B6) verb restrictions, in terms of the semantic features of their
arguments in the sentence, extracted using LDOCE [11]; (B7) dictionary defini-
tions, being a relative count of the overlapping words in dictionary definitions
of each of the possible translations of the verb and the words; and (B8) phrasal
verbs possibly occurring in a sentence.

Fig. 8 tabulates the number of facts in each of B1–B8 for the two disambigua-
tion tasks.

Background Monolingual Task Bilingual Task
B1 61175 4244
B2 33969 0
B3 33969 4870
B4 6523 1598
B5 66092 10514
B6 1308 1922
B7 1591 150
B8 0 418

All 204627 23716

Fig. 8. Ground facts comprising definitions for B1–B8. B8 does not appear in the
monolingual task, since SENSEVAL-3 data do not consider senses of the verbs occurring
in phrasal verbs. B2 was not included in the bilingual task because it was considered
to be covered by B5, since we had shorter sentences than in the monolingual task.

Algorithms. We distinguish here between three implementations that, to-
gether, comprise the randomised local search approach: (1) The implementation
of the procedure in Fig. 7). This is implemented here in the Prolog language,
with some associated executable files; (2) The ILP implementation used to con-
struct features using B1–B8. We use the ILP system Aleph [6]; and (3) The
model constructor. We use a linear SVM: the specific implementation used is
the one provided in the WEKA toolbox called SMO.4

3.2 Method

Our method is straightforward:

For each verb in each task (that is, 32 verbs in the monolingual task and 7
verbs in the bilingual task):

4 http://www.cs.waikato.ac.nz/∼ml/weka/. We obtain weights for features by using
the support vector machine with linear kernel. Specifically, let xi = [xi1, xi2, . . . , xin]
represent an n-dimensional input vector. In the case of linear kernel, the predictor
function can be described as: prediction(xi) = sgn[b + wT xi], where w =

∑
i αixi

and b is the interceptor. The linear classifier categorizes a new data point x to the
positive class if linear combination w1x1+w2x2+. . . , wnxn is above a given threshold
and to the negative class if the linear combination is below the threshold. We use
the absolute value |wj | as the weight of the jth feature. These weights have also been
used for the feature selection problem in [13].

http://www.cs.waikato.ac.nz/~ml/weka/
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1. Construct a set of good features using the ILP engine. Select a subset
of these as being relevant for the prediction task. Construct a model
using the feature-subset selected. Call this the “model with pre-specified
features” (or PreSpec model).

2. Identify a set of features using the randomised local-search procedure in
Fig. 7. Obtain a model using these features. Call this the “model with
features using randomised search” (or RandSearch model).

3. Compare the performance of the PreSpec model against the performance
of the RandSearch model.

The following details are relevant:

(a) We use the same “training-test” splits of the data as those used in [2]. Per-
formance will be measured by the accuracy of prediction on the test set (that
is, the percentage of test examples whose sense is predicted correctly).

(b) The ILP learner constructs a set of definite clauses in line with the usual
specifications for predictive ILP systems (see [14] for a statement of these).
Positive examples for the ILP learner are provided by the correct sense (or
translation in the bilingual case) of verbs in a sentence. Negative examples
are generated automatically using all other senses (or translations). The
translation of a clause into a Boolean feature is straightforward: the feature
corresponding to a definite clause is a function that returns the value “true”
for an example if and only if the body of the definite clause is true, given the
background knowledge. The ILP engine is constrained to return only a single
feature that discriminates best between the positive and negative examples.
On each iteration of Fig. 7, the ILP engine is forced to construct features
that are true for errors made by the current model.

(c) Although we are able to generate PreSpec models using the randomised
procedure in Fig. 7 (by simply setting R = 1 and M = 0), we will take
the models reported in [2] to denote the PreSpec models. We also consider a
slight variation by performing some amount of experimentation to determine
(locally) optimal settings for two parameters: the C parameter used by the
linear SVM and F , the number of features to be selected. We determine
the appropriate setting by systematic variation of the C parameter over the
range 0.0001 to 10000 in multiple of 10s and F over the same range examined
in [2]. The predictive accuracy with each (C, F ) setting is estimated and the
values that yield the best results are used to construct the final model (the
predictive accuracy estimate is obtained using an average over 5 repeats of
predictions on 20% of the training data sampled to form a “validation” set).
We refer to these models as PreSpec* models.

(d) For RandSearch models, we use a value of R = 10 and M = 5 for the
number of random restarts and iterations of local moves. We are not able to
offer domain-independent guidelines on values for these parameters. In the
context of using a similar approach in search for clauses [15], short periods of
local search with many random restarts were found to be effective. While the
values we have selected here are arbitrary, some more principled approach
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may be possible by a systematic empirical exploration of reasonable values.
We also consider a variant that performs no local search, and returns a set of
features, of the same size as those obtained by RandSearch, but constructed
randomly. We call this procedure “Random”. Both cases require a “start
point”, which is provided by features obtained from (repeated, if R > 1)
random samples of 30 examples.

(e) Comparison of performance will be done using the Wilcoxon signed-rank
test. The test is a non-parametric test of the null hypothesis that there
is no significant difference between the median performance of a pair of
algorithms. The test works by ranking the absolute value of the differences
observed in performance of the pair of algorithms. Ties are discarded and
the ranks are then given signs depending on whether the performance of
the first algorithm is higher or lower than that of the second. If the null
hypothesis holds, the sum of the signed ranks should be approximately 0.
The probabilities of observing the actual signed rank sum can be obtained
by an exact calculation (if the number of entries is less than 10), or by using
a normal approximation. We are interested in all cases in the the directional
hypothesis that the performance of RandSearch models are better than those
of PreSpec models.

4 Results and Discussion

Fig. 9 and 10 tabulate the comparative performance of the PreSpec, PreSpec*,
Random and RandSearch models on the two disambiguation tasks. Also included
is the performance of a classifier that simply predicts the most frequent sense of
the verb (as assessed on the training set). The average number of features used
in each case is in Fig. 11. We note at the outset that there appears to be little
to choose between “Random” and “Majority Class”, and between “PreSpec”
and “PreSpec*”. Therefore, in what follows, we will not include any further
discussion of either Random or PreSpec*. With this caveat, the principal details
in the tabulations are these: (1) Majority Class performs worse than the other
procedures; (2) For both tasks, the accuracies of the PreSpec models are usually
lower than the RandSearch models. Discarding ties, the PreSpec has the highest
accuracy for 10 of the 32 verbs for the monolingual task and for 1 of the 7
verbs for the bilingual task; and (3) RandSearch models use substantially fewer
features than PreSpec models.

We turn now to the question of whether the differences in accuracies observed
between the models are in fact significant. The probabilities calculated by us-
ing the Wilcoxon test are shown in Fig. 12.5 The tabulations further support
the position that both PreSpec and RandSearch models are significantly better
than a simple majority class guesser. RandSearch is significantly better on the
bilingual task, and there is reasonable evidence to believe that it is better on the

5 These were obtained from the program kindly provided by Richard Lowry at
http://faculty.vassar.edu/lowry/wilcoxon.html.
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Verb Senses Accuracy
Majority Class PreSpec PreSpec* RandSearch Random

activate 5 82.46 ±3.56 83.33 ±3.49 82.45 ±3.56 92.98 ±2.39 82.46 ±3.56
add 6 45.80 ±4.35 82.44 ±3.32 83.21 ±3.27 74.81 ±3.79 46.56 ±4.36
appear 3 44.70 ±4.33 71.21 ±3.94 71.21 ±3.94 87.12 ±2.92 43.94 ±4.32
ask 6 27.78 ±3.99 50.00 ±4.45 53.17 ±4.44 60.32 ±4.36 29.37 ±4.06
begin 4 59.74 ±5.59 74.03 ±5.00 72.73 ±5.07 71.43 ±5.15 59.74 ±5.59
climb 5 55.22 ±6.08 83.58 ±4.53 86.57 ±4.17 82.09 ±4.68 55.22 ±6.08
decide 4 67.74 ±5.94 77.42 ±5.31 80.64 ±5.02 77.42 ±5.31 67.74 ±5.94
eat 7 88.37 ±3.46 87.21 ±3.60 88.37 ±3.46 88.37 ±3.46 88.37 ±3.46
encounter 4 50.77 ±6.20 72.31 ±5.55 72.30 ±5.55 73.85 ±5.45 36.92 ±5.99
expect 3 74.36 ±4.94 92.31 ±3.02 92.31 ±3.02 89.74 ±3.44 74.36 ±4.94
express 4 69.09 ±6.23 72.73 ±6.01 67.27 ±6.32 70.91 ±6.12 69.09 ±6.23
hear 7 46.88 ±8.82 65.63 ±8.40 62.5 ±8.55 40.62 ±8.68 46.88 ±8.82
lose 9 52.78 ±8.32 58.33 ±8.22 52.7 ±8.32 47.22 ±8.32 52.78 ±8.32
mean 7 52.50 ±7.90 70.00 ±7.25 75.0 ±6.85 75.00 ±6.85 52.50 ±7.90
miss 8 33.33 ±8.61 33.33 ±8.61 36.66 ±8.80 56.67 ±9.05 33.33 ±8.61
note 3 38.81 ±5.95 88.06 ±3.96 88.06 ±3.96 82.09 ±4.68 56.72 ±6.05
operate 5 16.67 ±8.78 77.78 ±9.80 72.22 ±10.55 88.89 ±7.41 38.89 ±11.49
play 12 46.15 ±6.91 53.85 ±6.91 55.77 ±6.89 55.77 ±6.89 46.15 ±6.91
produce 6 52.13 ±5.15 67.02 ±4.85 65.96 ±4.88 77.66 ±4.30 52.13 ±5.15
provide 6 85.51 ±4.24 89.86 ±3.63 86.96 ±4.05 91.30 ±3.39 82.61 ±4.56
receive 9 88.89 ±6.05 88.89 ±6.05 88.89 ±6.05 92.59 ±5.04 88.89 ±6.05
remain 3 78.57 ±4.90 87.14 ±4.00 85.71 ±4.18 95.71 ±2.42 78.57 ±4.90
rule 5 50.00 ±9.13 83.33 ±6.80 83.33 ±6.80 90.00 ±5.48 40.00 ±8.94
smell 7 40.74 ±6.69 77.78 ±5.66 75.92 ±5.82 74.07 ±5.96 40.74 ±6.69
suspend 7 35.94 ±6.00 57.81 ±6.17 56.25 ±6.20 68.75 ±5.79 39.06 ±6.10
talk 9 72.60 ±5.22 73.97 ±5.14 73.97 ±5.14 75.34 ±5.04 72.60 ±5.22
treat 9 28.07 ±5.95 47.37 ±6.61 57.89 ±6.53 49.12 ±6.62 28.07 ±5.95
use 5 71.43 ±12.07 92.86 ±6.88 92.86 ±6.88 92.86 ±6.88 71.43 ±12.07
wash 12 67.65 ±8.02 73.53 ±7.57 61.76 ±8.33 58.82 ±8.44 67.65 ±8.02
watch 7 74.51 ±6.10 74.51 ±6.10 72.54 ±6.24 74.51 ±6.10 74.51 ±6.10
win 7 44.74 ±8.07 60.53 ±7.93 57.89 ±8.00 63.16 ±7.83 42.11 ±8.01
write 8 26.09 ±9.16 34.78 ±9.93 39.13 ±10.17 52.17 ±10.42 34.78 ±9.93

Mean 7 55.31 71.97 71.63 74.10 56.06
Median 6 52.31 74.03 72.63 74.90 52.31

Fig. 9. Estimates of accuracies of disambiguation models on the monolingual task.
“Senses” refers to the numbers of possible senses of each verb. The column labelled
“Majority class” gives the accuracy of models that simply predict the most common
sense of each verb (as estimated from the training data).

Verb Translations Accuracy
Majority class PreSpec PreSpec* RandSearch Random

come 11 50.30±7.62 76.74±6.44 75.56 ±6.41 86.67 ±5.07 55.56 ±7.41
get 17 21.00±6.70 40.54±8.07 64.1 ±7.68 51.28 ±8.00 20.51 ±6.47
give 5 88.80±4.81 95.35±3.21 100 ±0.00 97.78 ±2.20 97.78 ±2.20
go 11 68.50±6.78 78.72±5.97 77.55 ±5.96 83.67 ±5.28 71.43 ±6.45
look 7 50.30±7.45 82.22±5.70 76.59 ±6.17 82.98 ±5.48 59.57 ±7.16
make 11 70.00±7.25 75.00±6.85 78.57 ±6.33 80.95 ±6.06 73.81 ±6.78
take 13 28.50±8.24 60.00±8.94 56.25 ±8.77 56.25 ±8.77 12.50 ±5.85

Mean 11 53.91 72.65 75.51 77.08 55.88
Median 11 50.30 76.74 76.60 82.98 59.57

Fig. 10. Estimates of accuracies of disambiguation models on the bilingual task.
“Translations” refers to the numbers of possible translations of each verb into
Portuguese.
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Model Avg. Features Used
Monolingual Bilingual

Majority class 0 0
PreSpec 250 500
RandSearch 29 27

Fig. 11. Average numbers of features required to construct models. The values for
PreSpec are those reported in [2] after feature-selection was performed.

Majority class PreSpec RandSearch
Majority class − − −
PreSpec < 0.001, 0.010 − −
RandSearch < 0.001, 0.010 0.08, 0.05 −

Fig. 12. Probablities of observing the differences in accuracies for the monolingual and
bilingual tasks, under the null hypothesis that median accuracies of the pair of algo-
rithms being compared are equal. Each entry consists of a pair of probability estimates,
corresponding to the mono and bilingual tasks. The alternate hypothesis is each case is
that the column-model performance is better than the row-model performance. Thus
a value of 0.08 in the (RandSearch,PreSpec) entry means that there is an 8% chance
that the performance of the two models are actually the same, given the performance
observed on the monolingual task.

monolingual one as well (with the usual caveat that probabilities from repeated
cross-comparisons should be interpreted with caution).

For the monolingual task, we are also able to add to the comparisons reported
in [2], based on average accuracies for each verb. This is shown in Fig. 13. The
algorithms in this table use model construction methods that include bagged
decision trees (the Syntalex family), Naive Bayes (CLaC1), maximum entropy
modelling (CLaC2), a multiclass perceptron (MC-WSD), and ILP. It is evident
that the RandSearch models are comparable to the state-of-the-art in the field.

Models Accuracy
Majority class 55.31

Syntalex-1 67.00
Syntalex-2 66.50
Syntalex-3 67.60
Syntalex-4 65.30

CLaC1 67.00
CLaC2 66.00

MC-WSD 72.50

ILP 69.15
ILP-assisted 71.97

RandSearch 74.10

Fig. 13. Comparative average accuracies of the best models reported for the
SENSEVAL-3 competition. All rows except the last are as in [2]. There “ILP” refers
to using an ILP engine to construct rules for disambiguation (as opposed to using a
feature-based learner); and “ILP-assisted” is what we have called PreSpec here.
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The superior performance of RandSearch here suggests that adequate models
for the WSD tasks can be constructed with fairly small numbers of features. We
note however that this may not always be the case: depending on the background
knowledge available to the ILP learner, adequate models may require very large
numbers of features. In this case, we believe PreSpec-like models may perform
better. The distinction between PreSpec and RandSearch models is somewhat
illusory: we can clearly obtain the former using the latter with an R value of 1
and an M value of 0. A related question is whether the local search is beneficial
at all. We have some evidence for this: on the 32 verbs in the mono-lingual task,
not performing a local search yielded a better model only on 6 verbs (there were
10 ties, and local search gave better models on the remaining 16 verbs).

5 Concluding Remarks

In this paper we investigate the applicability of using a randomised search tech-
nique for feature construction using ILP. The search method we propose can be
seen as a gneralisation of some of the existing approaches to using ILP to extend
a feature-based representation. A direct implementation of randomised approach
is, however, computationally expensive, and we have described a number of ad-
ditional modifications for practical use. Chief amongst these is the use of the
errors made by a model constructed using an existing set of features to select
amongst future moves in the search. Results from an empirical evaluation on
some standard datasets in language processing are promising: we find predictive
accuracies of models constructed are usually higher and use substantially fewer
features. In cases where we are able to compare against the state-of-the-art, we
find average prediction accuracies are higher than those reported earlier.

There are a number of ways in which the work here can be improved and
extended. We list the main limitations here under three categories. On the theo-
retical front, it is evident that we have not provided any guarantees of optimality
on the feature-subset constructed. While this is typical of randomised methods
of the type proposed here, it would nevertheless be useful to obtain some per-
formance bounds, however loose.

On the implementation front, our implementation is based on the simplest
kind of randomised search (GSAT). Better methods exist and need to be inves-
tigated (for example, WalkSat). Further, we could consider other neighbourhood
definitions for the local search such as adding or dropping upto k features. Of
course, we are not restricted to use SVMs, or even the specific variant of SVM
here, as our model constructor. Our experiments on the monolingual task here
suggest that there is no significant difference between a “1-norm” SVM and the
standard approach we have used here, but other model construction techniques
may yield better results.

On the application front, we have evaluated our search procedure on a spe-
cific set of problems (namely, those concerned with word-sense disambiguation);
and against a specific kind of feature-construction (in which all features are
constructed before model construction). Clearly, testing on other datasets is
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desirable. We also need to extend the comparative study to include methods
like kFOIL [4] that perform “dynamic propositionalisation” (that is, generate
features incrementally).

These limitations notwithstanding, we believe there is sufficient evidence to
believe that the randomised approach used here could provide an interesting way
to interleave the construction of features and their associated models. We note
that when used in conjunction with a statistical model constructor (as we have
done here), we are effectively performing a form of statistical relational learning.
This aspect of the search-based approach needs to be investigated further.
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Abstract. ILP is a major approach to Relational Learning that ex-
ploits previous results in concept learning and is characterized by the
use of prior conceptual knowledge. An increasing amount of conceptual
knowledge is being made available in the form of ontologies, mainly for-
malized with Description Logics (DLs). In this paper we consider the
problem of learning rules from observations that combine relational data
and ontologies, and identify the ingredients of an ILP solution to it. Our
proposal relies on the expressive and deductive power of the KR frame-
work DL+log that allows for the tight integration of DLs and disjunctive
Datalog with negation. More precisely we adopt an instantiation of this
framework which integrates the DL SHIQ and positive Datalog. We
claim that this proposal lays the foundations of an extension of Relational
Learning, called Onto-Relational Learning, to account for ontologies.

1 Motivation

Due to the close relation between Logic Programming and Relational Databases
[5], ILP has established itself as a major approach to Relational Learning. Indeed,
the function-free fragment of Horn Clausal Logic (HCL) known as Datalog [4] is
the most widely used in ILP for Knowledge Representation (KR) purposes. Most
ILP exploits previous results in concept learning. A distinguishing feature of ILP
is the use of prior conceptual knowledge. Though this feature has been widely
recognized as one of the strongest points of ILP, the background knowledge in
ILP is often not organized around a well-formed conceptual model. This practice
seems to ignore the growing demand for an ontological foundation of knowledge
in intelligent systems. Indeed, an increasing amount of conceptual knowledge is
being made available in the form of ontologies. In Artificial Intelligence, an ontol-
ogy refers to an engineering artifact (more precisely, produced according to the
principles of Ontological Engineering [12]), constituted by a specific vocabulary
used to describe a certain reality, plus a set of explicit assumptions regarding the
intended meaning of the vocabulary words. This set of assumptions has usually
the form of a first-order logical (FOL) theory, where vocabulary words appear as
unary or binary predicate names, respectively called concepts and relations. In
the simplest case, an ontology describes a hierarchy of concepts related by sub-
sumption relationships; in more sophisticated cases, suitable axioms are added
in order to express other relationships between concepts and to constrain their
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intended interpretation. More formally, an ontology is a formal explicit specifica-
tion of a shared conceptualization for a domain of interest [13]. Among the other
things, this definition emphasizes the fact that an ontology has to be specified
in a language that comes with a formal semantics. Only by using such a formal
approach ontologies provide the machine interpretable meaning of concepts and
relations that is expected when using an ontology-based approach. Among the
formalisms proposed by Ontological Engineering, the most currently used are
Description Logics (DLs) [1]. Note that DLs are decidable fragments of FOL
that are incomparable with HCL as regards the expressive power [2] and the
semantics [27]. Yet, DLs and HCL can be combined according to some limited
forms of hybridization. Therefore the adoption of such hybrid KR systems can
help overcoming the current difficulties in accommodating ontologies in ILP.

In this paper we consider the problem of learning rules from observations that
combine relational data and ontologies, and identify the ingredients of an ILP
solution to it. Our proposal relies on the expressive and deductive power of the
KR framework DL+log [28] that allows for the tight integration of DLs and
disjunctive Datalog with negation (Datalog

¬∨) [8]. More precisely, we adopt
an instantiation of this framework obtained by integrating the DL SHIQ [15]
and positive Datalog [4]. We claim that this proposal lays the foundations of
an extension of Relational Learning, called Onto-Relational Learning, to account
for ontologies.

The paper is organized as follows. Section 2 provides background information
on the integration of ontologies and relational data from both the KR and the
ILP perspective. Section 3 introduces the KR framework of DL+log. Section 4
defines the ILP framework for learning SHIQ+log rules. Section 5 concludes the
paper with final remarks. More details of Datalog

¬∨ and DLs can be found in
Appendix A and B, respectively.

2 Background

2.1 Ontologies and Relational Data

The integration of ontologies and relational databases follows the tradition of
KR research on hybrid systems, i.e. those systems which are constituted by two
or more subsystems dealing with distinct portions of a single KB by performing
specific reasoning procedures [9]. The motivation for investigating and developing
such systems is to improve on two basic features of KR formalisms, namely
representational adequacy and deductive power, by preserving the other crucial
feature, i.e. decidability. In particular, combining DLs with HCL can easily yield
to undecidability if the interface between them is not reduced. The resulting KR
systems will be referred to as DL-HCL hybrid systems in the rest of the paper.
AL-log [7] is a hybrid KR system that integrates ALC [30] and Datalog [4].

In particular, variables occurring in the body of rules may be constrained with
ALC concept assertions to be used as ’typing constraints’. This makes rules ap-
plicable only to explicitly named objects. Reasoning for AL-log knowledge bases
is based on constrained SLD-resolution, i.e. an extension of SLD-resolution with
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a tableau calculus for ALC to deal with constraints. Constrained SLD-resolution
is decidable and runs in single non-deterministic exponential time. Constrained
SLD-refutation is a complete and sound method for answering ground queries.

A comprehensive study of the effects of combining DLs and HCL can be found
in [17]. Here the family Carin of hybrid languages is presented. Special attention
is devoted to the DL ALCNR. The results of the study can be summarized as
follows: (i) answering conjunctive queries over ALCNR TBoxes is decidable, (ii)
query answering in a logic obtained by extending ALCNR with non-recursive
Datalog rules, where both concepts and roles can occur in rule bodies, is also
decidable, as it can be reduced to computing a union of conjunctive query an-
swers, (iii) if rules are recursive, query answering becomes undecidable, (iv) de-
cidability can be regained by disallowing certain combinations of constructors in
the logic, and (v) decidability can be regained by requiring rules to be role-safe,
where at least one variable from each role literal must occur in some non-DL-
atom. As in AL-log, query answering is decided using constrained resolution and
a modified version of tableau calculus.

Besides decidability, another relevant issue is DL-safeness [27]. A safe inter-
action between the DL and the HCL part of an hybrid KB allows to solve the
semantic mismatch between DLs and HCL, namely the OWA for DLs and the
CWA for HCL1. In this respect, AL-log is DL-safe whereas Carin is not.

2.2 Ontologies and Relational Learning

Two ILP frameworks have been proposed so far that adopt a hybrid DL-HCL
representation for both hypotheses and background knowledge. They can be
considered as previous attempts at using ontologies in Relational Learning.

The framework proposed in [29] focuses on discriminant induction and adopts
the ILP setting of learning from interpretations. Hypotheses are represented
as Carin-ALN non-recursive rules with a Horn literal in the head that plays
the role of target concept. The coverage relation of hypotheses against exam-
ples adapts the usual one in learning from interpretations to the case of hybrid
Carin-ALN BK. The generality relation between two hypotheses is defined as
an extension of generalized subsumption. Procedures for testing both the cover-
age relation and the generality relation are based on the existential entailment
algorithm of Carin. Following [29], Kietz studies the learnability of Carin-
ALN , thus providing a pre-processing method which enables ILP systems to
learn Carin-ALN rules [16].

In [18], the representation and reasoning means come from AL-log. Hypothe-
ses are represented as constrained Datalog clauses that are linked, connected
(or range-restricted), and compliant with the bias of Object Identity (OI)2. Note
that this framework is general, meaning that it is valid whatever the scope of

1 Note that the OWA and CWA have a strong influence on the results of reasoning.
2 The OI bias can be considered as an extension of the UNA from the semantic level

to the syntactic one of AL-log. It can be the starting point for the definition of either
an equational theory or a quasi-order for constrained Datalog clauses.
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induction (description/prediction) is. Therefore the literal in the head of hy-
potheses represents a concept to be either discriminated from others (discrimi-
nant induction) or characterized (characteristic induction). The generality rela-
tion for one such hypothesis language is an adaptation of generalized subsump-
tion [3], named B-subsumption, to the AL-log KR framework. It gives raise to a
quasi-order and can be checked with a decidable procedure based on constrained
SLD-resolution [20]. Coverage relations for both ILP settings of learning from
interpretations and learning from entailment have been defined on the basis of
query answering in AL-log [19]. As opposite to [29], the framework has been
partially implemented in an ILP system [22]. More precisely, an instantiation of
it for the case of characteristic induction from interpretations has been consid-
ered. Indeed, the system supports a variant of a very popular data mining task -
frequent pattern discovery - where rich prior conceptual knowledge is taken into
account during the discovery process in order to find patterns at multiple levels of
description granularity. The search through the space of patterns represented as
unary conjunctive queries in AL-log and organized according to B-subsumption
is performed by applying an ideal downward refinement operator [21].

3 Integrating Ontologies and Rules with DL+log

The KR framework of DL+log [28] allows for the tight integration of DLs [1] and
Datalog

¬∨ [8]. More precisely, it allows a DL knowledge base (DL-KB) to be
extended with weakly-safe Datalog

¬∨ rules. Note that the condition of weak
safeness allows to overcome the main representational limits of the approaches
based on the DL-safeness condition, e.g. the possibility of expressing conjunctive
queries and unions of conjunctive queries, by keeping the integration scheme still
decidable. In a certain extent, DL+log is between AL-log and Carin.

3.1 Syntax

We start from three mutually disjoint predicate alphabets:

– an alphabet of concept names PC ;
– an alphabet of role names PR;
– an alphabet of Datalog predicates PD.

We call a predicate p a DL-predicate if either p ∈ PC or p ∈ PR. Then, we denote
by C a countably infinite alphabet of constant names.

An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants. If no variable symbol occurs in X ,
then p(X) is called a ground atom (or fact). If p ∈ PC ∪ PR, the atom is called
a DL-atom, while if p ∈ PD, it is called a Datalog atom.

Given a description logic DL, a DL- KB with weakly-safe Datalog
¬∨ rules

(DL+log-KB for short) B is a pair (Σ, Π), where:

– Σ is a DL-KB, i.e., a pair (T ,A) where T is the TBox and A is the ABox;
– Π is a set of Datalog

¬∨ rules, where each rule R has the form
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p1(X1) ∨ . . . ∨ pn(Xn)←
r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),¬u1(W1), . . . ,¬uh(Wh)

n ≥ 0, m ≥ 0, k ≥ 0, h ≥ 0, each pi(Xi), rj(Yj), sl(Zl), uk(Wk) is an atom
and:
• each pi is either a DL-predicate or a Datalog predicate;
• each rj , uk is a Datalog predicate;
• each sl is a DL-predicate;
• (Datalog safeness) every variable occurring in R must appear in at

least one of the atoms r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk);
• (weak safeness) every head variable of R must appear in at least one of

the atoms r1(Y1), . . . , rm(Ym).

We remark that the above notion of weak safeness allows for the presence of
variables that only occur in DL-atoms in the body of R. On the other hand,
the notion of DL-safeness of variables adopted in previous approaches [25,23,26]
can be expressed as follows: every variable of R must appear in at least one of
the atoms r1(Y1), . . . , rm(Ym). Therefore, DL-safeness forces every variable of
R to occur also in the Datalog atoms in the body of R, while weak safeness
allows for the presence of variables that only occur in DL-atoms in the body of
R. Without loss of generality, we can assume that in a DL+log-KB (Σ, Π) all
constants occurring in Σ also occur in Π .

Example 1. Let us consider a DL+log-KB B (adapted from [28]) integrating the
following DL-KB Σ (ontology about persons)

[A1] PERSON � ∃ FATHER−.MALE
[A2] MALE � PERSON
[A3] FEMALE � PERSON
[A4] FEMALE � ¬MALE

MALE(Bob)
PERSON(Mary)
PERSON(Paul)
FATHER(John,Paul)

and the following Datalog
¬∨ program Π (rules about students):

[R1] boy(X) ← enrolled(X,c1,bsc), PERSON(X), ¬girl(X)
[R2] girl(X) ← enrolled(X,c2,msc), PERSON(X)
[R3] boy(X)∨ girl(X) ← enrolled(X,c3,phd), PERSON(X)
[R4] FEMALE(X)← girl(X)
[R5] MALE(X) ← boy(X)
[R6] man(X) ← enrolled(X,c3,phd), FATHER(X,Y)

enrolled(Paul,c1,bsc)
enrolled(Mary,c1,bsc)
enrolled(Mary,c2,msc)
enrolled(Bob,c3,phd)
enrolled(John,c3,phd)
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Note that the rules mix DL-literals and Datalog-literals. Notice that the vari-
able Y in rule R6 is weakly-safe but not DL-safe, since Y does not occur in any
Datalog predicate in R6.

3.2 Semantics

For DL+log two semantics have been defined: a first-order logic (FOL) semantics
and a nonmonotonic (NM) semantics. In particular, the latter extends the stable
model semantics of Datalog

¬∨ [10].
According to the NM semantics, DL-predicates are still interpreted under the

classical open-world assumption (OWA), while Datalog predicates are inter-
preted under a closed-world assumption (CWA). Notice that, both under the
FOL semantics and the NM semantics, entailment can be reduced to satisfiabil-
ity, since it is possible to express constraints in the Datalog program. More
precisely, under both semantics, it is immediate to verify that (Σ, Π) entails p(c)
iff (Σ, Π∪{← p(c)} is unsatisfiable. In a similar way, it can be seen that conjunc-
tive query answering can be reduced to satisfiability in DL+log. Consequently,
Rosati [28] concentrates on the satisfiability problem in DL+log-KBs.

It has been shown that, when the rules are positive disjunctive, i.e., there are
no negated atoms in the bodies of rules, the above two semantics are equivalent
with respect to the satisfiability problem. In particular, FOL-satisfiability can
always be reduced (in linear time) to NM-satisfiability. Hence, the satisfiability
problem under the NM semantics is in the focus of interest.

Example 2. With reference to Example 1, it can be easily verified that all NM-
models for B satisfy the following ground atoms:

– boy(Paul) (since rule R1 is always applicable for {X/Paul} and R1 acts like
a default rule, which can be read as follows: if X is a person enrolled in course
c1, then X is a boy, unless we know for sure that X is a girl);

– girl(Mary) (since rule R2 is always applicable for {X/Mary});
– boy(Bob) (since rule R3 is always applicable for {X/Bob}, and, by rule R4,

the conclusion girl(Bob) is inconsistent with Σ);
– MALE(Paul) (due to rule R5);
– FEMALE(Mary) (due to rule R4).

Notice that B |=NMFEMALE(Mary), while Σ �|=FOL FEMALE(Mary). In other
words, adding rules has indeed an effect on the conclusions one can draw about
DL-predicates. Moreover, such an effect also holds under the FOL semantics of
DL+log-KBs, since it can be immediately verified that B |=FOLFEMALE(Mary)
in this case.

3.3 Reasoning

The problem statement of satisfiability for finite DL+log-KBs requires some
preliminary definitions. We start by introducing Boolean conjunctive queries
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(CQs) and Boolean unions of conjunctive queries (UCQs), and the containment
problem for such queries.

A Boolean UCQ over a predicate alphabet P is a first-order sentence of the
form ∃X.conj1(X)∨ . . .∨conjn(X), where X is a tuple of variable symbols and
each conji(X) is a set of atoms whose predicates are in P and whose arguments
are either constants or variables from X. A Boolean CQ corresponds to a Boolean
UCQ in the case when n = 1.

Given a DL-TBox T , a Boolean CQ Q1 and a Boolean UCQ Q2 over the
alphabet PC ∪ PR, Q1 is contained in Q2 with respect to T , denoted by T |=
Q1 ⊆ Q2, iff, for every model I of T , if Q1 is satisfied in I then Q2 is satisfied in
I. In the following, we call the problem of deciding T |= Q1 ⊆ Q2 the Boolean
CQ/UCQ containment problem.3

Besides the Boolean CQ/UCQ containment problem, it is important to clarify
how the grounding operation used in stable model semantics is adapted to the
DL+log case. Given a DL+log KB B = (Σ, Π), the DL-grounding of Π , denoted
as grp(Π), is a set of Boolean CQs. Note that grp(Π) constitutes a partial
grounding of the conjunctions of DL-atoms that occur in Π with respect to the
constants in CΠ , since the variables that only occur in DL-atoms in the body of
rules arenot replaced by constants in grp(Π).

The algorithm NMSAT-DL+log for deciding NM-satisfiability of DL+log-
KBs has a very simple structure, since it decides satisfiability by looking for a
guess (GP , GN ) of the Boolean CQs in grp(Π) that is consistent with the DL-
KB Σ (Boolean CQ/UCQ containment problem) and such that the Datalog

¬∨

program Π(GP , GN ) has a stable model. Notice that Π(GP , GN ) is a ground
Datalog

¬∨ program over PD, i.e. no DL-predicate occurs in such a program.
The decidability of reasoning in DL+log depends on the decidability of the
Boolean CQ/UCQ containment problem in DL.

Theorem 1. [28] For every description logic DL, satisfiability of DL+log-KBs
(both under FOL semantics and under NM semantics) is decidable iff Boolean
CQ/UCQ containment is decidable in DL.

The decidability of ground query answering follows from Theorem 1.

Corollary 1. Given a DL+log KB (Σ, Π) and a ground atom α, (Σ, Π) |= α
iff (Σ, Π ∪ {← α}) is unsatisfiable.

Thus ground queries can be answered by means of the abovementioned algorithm
NMSAT-DL+log for deciding NM-satisfiability of DL+log-KBs.

From Theorem 1 and from previous results on query answering and query
containment in DLs, we are able to state decidability of reasoning in several in-
stantiations of DL+log. In particular, for the DL SHIQ it is known that Boolean
CQ/UCQ containment is decidable [11]. Since SHIQ is the most expressive DL
for which this property has been proved, we consider SHIQ+log (i.e. SHIQ
extended with weakly-safe positive Datalog rules) as the KR framework in our
study of Onto-Relational Learning.
3 This problem was called existential entailment in [17].
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4 Towards Onto-Relational Learning in SHIQ+log

4.1 Defining the Learning Problem

We consider the problem of learning rules from ontologies and relational data.
At this stage of work the scope of induction does not matter. So we assume that
the predicate in the rule head represents a concept to be either discriminated
from others (discriminant induction) or characterized (characteristic induction).
Therefore the term ’observation’ is to be preferred to the term ’example’. We
choose to work within the setting of learning from interpretations [6] which
requires an observation to be represented as a set of ground unit clauses.

We assume that the data are represented as a SHIQ+log KB B where the
intensional part K (i.e., the TBox T plus the set ΠR of rules) plays the role of
background knowledge and the extensional part (i.e., the ABox A plus the set
ΠF of facts) contributes to the definition of observations. Therefore ontologies
may appear as input to the learning problem of interest.

Example 3. Suppose we have a SHIQ+log KB (adapted from [28]) consisting
of the following intensional knowledge K:

[A1] RICH�UNMARRIED � ∃ WANTS-TO-MARRY−.�
[A2] WANTS-TO-MARRY� LIKES
[R1] RICH(X) ← famous(X), scientist(X,us)

and the following extensional knowledge F :

UNMARRIED(Mary)
UNMARRIED(Joe)
famous(Mary)
famous(Paul)
famous(Joe)
scientist(Mary,us)
scientist(Paul,us)
scientist(Joe,it)

that can be split into the sets FPaul = {famous(Paul), scientist(Paul,us)},
FMary = {UNMARRIED(Mary), famous(Mary), scientist(Mary,us)}, and FJoe =
{UNMARRIED(Joe), famous(Joe), scientist(Joe,it)}.
The language L of hypotheses must allow for the generation of SHIQ+log rules
starting from three disjoint alphabets PC(L) ⊆ PC(B), PR(L) ⊆ PR(B), and
PD(L) ⊆ PD(B). More precisely, we consider linked4 and range-restricted5 defi-
nite clauses of the form
4 Let H be a clause. A term t in some literal li ∈ H is linked with linking-chain of

length 0, if t occurs in head(H), and is linked with linking-chain of length d + 1, if
some other term in li is linked with linking-chain of length d. The link-depth of a
term t in some li ∈ H is the length of the shortest linking-chain of t. A literal li ∈ H
is linked if at least one of its terms is linked.

5 A clause H is range-restricted or connected if each variable occurring in head(H)
also occur in body(H).
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p(X)← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk)

where m ≥ 0, k ≥ 0, each p(X), rj(Yj), sl(Zl) is an atom, and:

– p is either a SHIQ-predicate or a Datalog-predicate;
– each rj is a Datalog-predicate;
– each sl is a SHIQ-predicate.

Note that the literal p(X) in the head represents the target concept, denoted
as c if p is a Datalog-predicate and as C if p is a SHIQ-predicate. In the
following we provide examples for these two cases of rule learning, one aimed at
inducing c(X) ← rules and the other C(X) ← rules. The former kind of rule
will enrich the Datalog part of the KB, whereas the latter will extend the DL
part (i.e., the input ontology).

Example 4. Suppose that the Datalog-predicate happy is the target concept
and the set PD(Lhappy) ∪ PC(Lhappy) ∪ PR(Lhappy) = {famous/1} ∪ {RICH/1} ∪
{WANTS-TO-MARRY/2, LIKES/2} provides the building blocks for the language
Lhappy. The following SHIQ+log rules

Hhappy
1 happy(X) ← RICH(X)

Hhappy
2 happy(X) ← famous(X)

Hhappy
3 happy(X) ← famous(X), WANTS-TO-MARRY(Y,X)

belonging to Lhappy can be considered hypotheses for the target concept happy.
Note that Hhappy

3 is weakly-safe.

Example 5. Suppose now that the target concept is the DL-predicate LONER. If
LLONER is defined over PD(LLONER) ∪ PC(LLONER) = {famous/1, scientist/2} ∪
{UNMARRIED/1}, then the following SHIQ+log rules

HLONER
1 LONER(X) ← scientist(X,Y)

HLONER
2 LONER(X) ← scientist(X,Y), UNMARRIED(X)

HLONER
3 LONER(X) ← scientist(X,Y), famous(X)

belong to LLONER and represent hypotheses for the target concept LONER.

4.2 Testing the Hypothesis Coverage of Observations

An observation oi ∈ O is represented as a couple (p(ai),Fi) where Fi is a set
containing ground facts concerning the individual ai. We assume K ∩O = ∅.

Definition 1. Let H ∈ L be a hypothesis, K a background knowledge and oi ∈
O an observation. We say that H covers oi under interpretations w.r.t. K iff
K ∪ Fi ∪H |= p(ai).

Note that the coverage test can be reduced to query answering in SHIQ+log
KBs which in its turn can be reformulated as a satisfiability problem of the KB.
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Example 6. The hypothesis Hhappy
3 mentioned in Example 4 covers the observa-

tion oMary = (happy(Mary),FMary) because K ∪ FMary ∪Hhappy
3 |= happy(Mary).

Indeed, all NM-models for B = K ∪ FMary ∪H
happy
3 satisfy:

– famous(Mary) (trivial!);
– ∃ WANTS-TO-MARRY−.�(Mary), due to the axiom A1 and to the fact that

both RICH(Mary) and UNMARRIED(Mary) hold in every model of B;
– happy(Mary), due to the above conclusions and to the rule R1. Indeed, since
∃WANTS-TO-MARRY−.�(Mary) holds in every model of B, it follows that in
every model there exists a constant x such that WANTS-TO-MARRY(x,Mary)
holds in the model, consequently from rule R1 it follows that happy(Mary)
also holds in the model.

Note that H
happy
3 does not cover the observations oJoe = (happy(Joe),FJoe) and

oPaul = (happy(Paul),FPaul). More precisely, K ∪ FJoe ∪Hhappy
3 �|= happy(Joe)

because scientist(Joe,it) holds in every model of B = K∪FJoe∪H
happy
3 , thus

making the rule R1 not applicable for {X/Joe}, therefore RICH(Joe) not deriv-
able. Finally, K ∪ FPaul ∪ Hhappy

3 �|= happy(Paul) because UNMARRIED(Paul)
is not forced to hold in every model of B = K ∪ FPaul ∪ H

happy
3 , therefore

∃WANTS-TO-MARRY−.�(Paul) is not forced by A1 to hold in every such model.
It can be proved that H

happy
1 covers oMary and oPaul, while H

happy
2 all the three

observations.

Example 7. With reference to Example 5, the hypothesis HLONER
3 covers the obser-

vation oMary = (LONER(Mary),FMary) because all NM-models for B = K∪FMary ∪
HLONER

3 do satisfy scientist(Mary,us) and famous(Mary). Note that it covers
the observations oPaul = (LONER(Paul),FPaul) and oJoe = (LONER(Joe),FJoe)
for analogous reasons. It can be proved that HLONER

2 covers oMary and oJoe while
HLONER

1 all three observations.

4.3 Structuring the Hypothesis Space

The definition of a generality relation for hypotheses in L can disregard nei-
ther the peculiarities of SHIQ+log nor the methodological apparatus of ILP.
Roughly speaking, we propose to adapt generalized subsumption [3] to the case of
SHIQ+log rules. The resulting generality relation will be called K-subsumption,
briefly �K, from now on. First we provide a model-theoretic definition of �K
based on the notion of covering6, then a more operational characterization that
relies on the reasoning tasks known for SHIQ+log.

Definition 2. Let H1, H2 ∈ L be two hypotheses and K a background knowledge.
We say that H1 �K H2 if for every model J of K and every ground atom α such
that H2 covers α under J , we have that H1 covers α under J .
6 A definite clause C covers a ground atom α under an interpretation J if there is a

ground substitution θ for C (Cθ is ground) such that body(C)θ is true under J and
head(C)θ = α. This notion can be easily extended to the case of SHIQ+log rules,
assuming that α can be either a SHIQ-atom or a Datalog-atom.
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It can be proved that �K is a quasi-order (i.e. it is a reflexive and transitive
relation) for SHIQ+log rules.

A procedure for deciding �K can be derived from the following characteriza-
tion of K-subsumption.

Definition 3. Let H1, H2 ∈ L be two hypotheses standardized apart, K a back-
ground knowledge, and σ a Skolem substitution7 for H2 with respect to {H1}∪K.
We say that H1 �K H2 iff there exists a ground substitution θ for H1 such that
(i) head(H1)θ = head(H2)σ and (ii) K ∪ body(H2)σ |= body(H1)θ.

Note that condition (ii) is a variant of the Boolean CQ/UCQ containment prob-
lem because body(H2)σ and body(H1)θ are both Boolean CQs. The difference
between (ii) and the original formulation of the problem is that K encompasses
not only a TBox but also a set of rules. Nonetheless this variant can be reduced
to the satisfiability problem for finite SHIQ+log KBs. Indeed the skolemization
of body(H2) allows to reduce the Boolean CQ/UCQ containment problem to a
CQ answering problem. Due to the aforementioned link between CQ answer-
ing and satisfiability, checking (ii) can be reformulated as proving that the KB
(T , ΠR ∪ body(H2)σ ∪ {← body(H1)θ}) is unsatisfiable. Once reformulated this
way, (ii) can be solved by applying the algorithm NMSAT-DL+log.

Example 8. Let us consider the hypotheses

Hhappy
1 happy(A) ← RICH(A)

Hhappy
2 happy(X) ← famous(X)

reported in Example 4 up to variable renaming. We want to check whether
H

happy
1 �K H

happy
2 holds. Let σ = {X/a} a Skolem substitution for H

happy
2 with

respect to K ∪ H
happy
1 and θ = {A/a} a ground substitution for H

happy
1 . The

condition (i) is immediately verified. The condition (ii) K ∪ {famous(a)} |=
RICH(a) is nothing else that a ground query answering problem in SHIQ+log.
It can be proved that the query RICH(a) can not be satisfied because the rule
R1 is not applicable for a. Thus, Hhappy

1 ��K Hhappy
2 . Since Hhappy

2 ��K Hhappy
1 , the

two hypotheses are incomparable with respect to K-subsumption. Conversely, it
can be proved that Hhappy

2 �K Hhappy
3 but not viceversa.

Example 9. Let us consider the hypotheses

HLONER
1 LONER(A) ← scientist(A,B)

HLONER
2 LONER(X) ← scientist(X,Y),UNMARRIED(X)

reported in Example 5 up to variable renaming. We want to check whether
HLONER

1 �K HLONER
2 holds. Let σ = {X/a, Y/b} a Skolem substitution for HLONER

2

with respect to K∪HLONER
1 and θ = {A/a, B/b} a ground substitution for HLONER

1 .
The condition (i) is immediately verified. The condition
7 Let B be a clausal theory and H be a clause. Let X1, . . . , Xn be all the variables

appearing in H , and a1, . . . , an be distinct constants (individuals) not appearing in
B or H . Then the substitution {X1/a1, . . . , Xn/an} is called a Skolem substitution
for H w.r.t. B.
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(ii) K ∪ {scientist(a,b), UNMARRIED(a)} |= {scientist(a,b)}

is a ground query answering problem in SHIQ+log. It can be easily proved that all
NM-models for K ∪ {scientist(a,b), UNMARRIED(a)} satisfy scientist(a,b).
Thus, HLONER

1 �K HLONER
2 . The viceversa does not hold.

It is straightforward to prove that the decidability of K-subsumption follows
from the decidability of SHIQ+log.

4.4 Searching the Hypothesis Space

The space (L,�K) is a quasi-ordered set, therefore it can be searched by refine-
ment operators.

Definition 4. Let L be a language of hypotheses built out of the three finite and
disjoint alphabets PC(L), PR(L), and PD(L), and

p(X)← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk)

be a hypothesis belonging to L. A downward refinement operator ρ for (L,�K)
is defined such that the set ρ(H) contains all Hs ∈ L that can be obtained from
H by applying one of the following refinement rules:

〈AddDataLit〉 body(Hs) = body(H) ∪ {rm+1(Ym+1)}, where rm+1 ∈ PD and
rm+1(Ym+1) �∈ body(H).

〈AddOntoLit〉 body(Hs) = body(H)∪{sk+1(Zk+1)}, where sk+1 ∈ PC∪PR and
it does not exist any sl ∈ body(H) such that sk+1 � sl.

〈SpecOntoLit〉 body(Hs) = (body(H) \ {sl(Zl)}) ∪ s′l(Zl) where s′l ∈ PC ∪ PR

and s′l � sl.

An upward refinement operator δ for (L,�K) is defined such that the set δ(H)
contains all Hg ∈ L that can be obtained from H by applying one of the following
refinement rules:

〈DelDataLit〉 body(Hg) = body(H) \ {rj(Yj)}.
〈DelOntoLit〉 body(Hg) = body(H) \ {sl(Zl)}.
〈GenOntoLit〉 body(Hg) = (body(H) \ {sl(Zl)}) ∪ s′l(Zl) where s′l ∈ PC ∪ PR

and sl � s′l.

All the rules of ρ (resp. δ) are correct, i.e. the Hs’s (resp. Hg’s) obtained by
applying any of the rules of ρ (resp. δ) to H ∈ L are such that H �K Hs

(resp. Hg �K H). This can be proved intuitively by observing that they act
only on body(H). Thus condition (i) of Definition 2 is satisfied. Furthermore,
it is straightforward to notice that the application of any of the rules of ρ to
H reduces (resp. augments) the number of models of H . In particular, as for
〈SpecOntoLit〉 and 〈GenOntoLit〉, this intuition follows from the semantics of
SHIQ. So condition (ii) also is fulfilled.
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Example 10. With reference to Example 5, the hypotheses HLONER
2 and HLONER

3

are obtained from HLONER
1 by applying the refinement rules 〈AddDataLit〉 and

〈AddOntoLit〉 respectively. The rule 〈AddOntoLit〉 also specializes the hypoth-
esis Hhappy

2 of Example 4 into Hhappy
3 , which in its turn can be obtained as

refinement via 〈SpecOntoLit〉 from the following clause

Hhappy
4 =happy(X)← famous(X), LIKES(Y,X)

also belonging to Lhappy.
If the bottom-up search is adopted, we have that HLONER

1 can be obtained from
HLONER

2 by applying 〈DelDataLit〉 and from HLONER
3 by applying 〈DelOntoLit〉.

Also, H
happy
3 can be generalized into H

happy
2 or H

happy
4 according to whether

〈DelOntoLit〉 or 〈GenOntoLit〉 is applied.

Ideal refinement operators have been proven not to exist for clausal languages
ordered by θ-subsumption or stronger orders but can be approximated by drop-
ping the requirement of properness or by bounding the language. We choose the
latter option because it guarantees that, if (L,�) is a quasi-ordered set, L is
finite and � is decidable, then there always exists an ideal refinement operator
for (L,�). In our case, since �K is a decidable quasi-order, we only need to
bound L in a suitable manner. From Definition 4 we know that the alphabets
PC(L), PR(L), and PD(L) are finite. Having Datalog as basis for the CL part
of SHIQ+log avoids the generation of infinite terms. Yet, the expressive power
of SHIQ+log requires several other bounds to be imposed on L in order to
guarantee its finiteness. It is necessary to introduce a complexity measure for
SHIQ+log rules, as a pair of two different coordinates. Considering that the
complexity of a SHIQ+log rule resides in its body, the former coordinate is the
size (i.e. the difference between the number of symbol occurrences and the num-
ber of distinct variables) of the biggest literal in body(H), while the latter is the
number of literals in body(H). To keep L finite, we need first to set a maximum
value for these two coordinates. Second, it is necessary to set the maximum num-
ber of specialization/generalization steps of the DL literals so that the search in
the ontology is also depth-bounded.

Ideal refinement operators are mainly of theoretical interest, because in prac-
tice they are often very inefficient. More constructive - though possibly improper
- refinement operators are usually to be preferred over ideal ones. Optimal re-
finement operators can be easily derived from those proposed in this paper.

5 Conclusions and Future Work

Using ontologies in Relational Learning raises several challenges to the ILP
community. The approach followed in this paper aims at extending Relational
Learning to account for ontologies in a clear, well-founded and systematic way
analogously to what has been done in Statistical Relational Learning. More pre-
cisely, our contribution to the upcoming Onto-Relational Learning adopts a de-
cidable KR framework, SHIQ+log, that is the most powerful among the ones
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Table 1. Comparison between ILP frameworks for Onto-Relational Learning

Learning in Carin-ALN [29] Learning in AL-log [18] Learning in SHIQ+log

prior knowledge Carin-ALN KB AL-log KB SHIQ+log KB
ontology lang. ALN ALC SHIQ

hypothesis lang. Carin-ALN non-recursive rules constrained Datalog clauses SHIQ+log non-recursive rules
target concept Horn literal Datalog literal SHIQ/Datalog literal

observations interpretations interpretations/implications interpretations
induction predictive predictive/descriptive predictive/descriptive

generality order extension of [3] to Carin-ALN extension of [3] to AL-log extension of [3] to SHIQ+log
coverage test Carin-ALN query answering AL-log query answering SHIQ+log query answering
ref. operators no downward downward

implementation no partially no
application no yes no

currently available for the integration of DLs and CLs. It differs from the related
proposals [29] and [18] (illustrated in Section 2.2) in several respects as summa-
rized in Table 1, notably the following three. First, it relies on a more expressive
DL (i.e., SHIQ) - thus getting closer to the current standard ontology languages.
Second, it allows for inducing a definition for DL concepts (i.e., rules with a SHIQ
literal in the head) - thus having ontology elements not only as input but also
as output of the learning process. Third, it adopts a tighter form of integration
between the DL part and the CL part of rules (i.e., the weakly-safe one) - thus
enabling the decidability of the Boolean CQ/UCQ containment problem. Simi-
larities also emerge from Table 1 such as the definition of a semantic generality
relation for hypotheses in order to accommodate ontologies in ILP. Note that gen-
eralized subsumption is chosen for adaptation because in all three ILP frameworks
definite clauses, though enriched with DL literals, are still used.

Though this paper can be considered as a feasibility study of learning in
SHIQ+log, yet it provides the core ingredients of an ILP framework for Onto-
Relational Learning. We would like to emphasize that these ingredients will be
still valid for any other upcoming decidable instantiation of DL+log, provided
that positive Datalog is still considered. Anyway, having preliminary results
for learning in SHIQ+log is already valuable from an application viewpoint.
Indeed, SHIQ was the starting point for the design of the ontology language
OWL for the Semantic Web [14]. Also, the Semantic Web offers several use
cases for rules (built on top of OWL ontologies) among which we can choose
in order to see our ILP approach to Onto-Relational Learning at work. As next
step towards any practice, we plan to define ILP algorithms starting from the
ingredients identified in this paper. Also we would like to investigate the im-
pact of having Datalog

¬∨ both in the language of hypotheses and in the lan-
guage for the background theory. The inclusion of the nonmonotonic features
of SHIQ+log full will strengthen the ability of our ILP framework to deal
with incomplete knowledge by performing some form of commonsense reason-
ing. One such ability can turn out to be useful in application domains, such as
the Semantic Web, that require reasoning with uncertainty and under inconsis-
tency. Speaking of which and as a final remark, we would like to point out that
Onto-Relational Learning is not alternative but complementary to Statistical
Relational Learning.
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A Disjunctive Datalog

Disjunctive Datalog (Datalog
∨) is a powerful database query language based

on disjunctive logic programming [8]. Briefly, it is a variant of Datalog where
disjunctions may appear in the rule heads. Advanced versions (Datalog

¬∨) also
allow for negation in the bodies, which can be handled according to a semantics
for negation in disjunctive logic programming.

More formally, a Datalog
¬∨ rule R is an expression of the form

p1(X1) ∨ . . . ∨ pn(Xn)← r1(Y1), . . . , rm(Ym),¬u1(W1), . . . ,¬uh(Wh)
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such that n ≥ 0, m ≥ 0, h ≥ 0, each pi(Xi), rj(Yj), uk(Wk) is an atom
and every variable occurring in R must appear in at least one of the atoms
r1(Y1), . . . , rm(Ym) . This last condition is known as the Datalog safeness
condition for variables. The variables occurring in the atoms p1(X1) ∨ . . . ∨
pn(Xn) are called the head variables of R. If n = 0, we call R a constraint.

A Datalog
¬∨ program Π is a set of Datalog

¬∨ rules. If, for all R ∈ Π ,
n ≤ 1, Π is called a Datalog

¬ program. If, for all R ∈ Π , h = 0, Π is called
a positive Datalog

∨ program. If, for all R ∈ Π , n ≤ 1 and h = 0, Π is called
a positive Datalog program. If there are no occurrences of variable symbols in
Π , Π is called a ground program.

Defining the semantics of a Datalog
¬∨ program is complicated by the pres-

ence of disjunction in the rules’ heads because it makes the underlying disjunctive
logic programming inherently nonmonotonic, i.e. new information can invalidate
previous conclusions. Among the many alternatives, one widely accepted seman-
tics for Datalog

¬∨ is the extension to the disjunctive case of the stable model
semantics [10]. According to this semantics, a Datalog

¬∨ program may have
several alternative models (but possibly none), each corresponding to a possible
view of the reality.

B Description Logics

DLs are a family of decidable FOL fragments that allow for the specification
of knowledge in terms of classes (concepts), binary relations between classes
(roles), and instances (individuals) [2]. Complex concepts can be defined from
atomic concepts and roles by means of constructors (see Table 2). E.g., concept
descriptions in the basic DL AL are formed according to only the constructors of
atomic negation, concept conjunction, value restriction, and limited existential
restriction. The DLs ALC and ALN are members of the AL family. The for-
mer extends AL with (arbitrary) concept negation (also called complement and
equivalent to having both concept union and full existential restriction), whereas
the latter with number restriction. The DL ALCNR adds to the constructors
inherited from ALC and ALN a further one: role intersection (see Table 2). On
the contrary, in the DL SHIQ [15] it is allowed to invert roles and to express
qualified number restrictions of the form ≥ nS.C and ≤ nS.C where S is a
simple role (see Table 2).

A DL knowledge base (KB) can state both is-a relations between concepts
(axioms) and instance-of relations between individuals (resp. couples of indi-
viduals) and concepts (resp. roles) (assertions). Concepts and axioms form the
so-called TBox whereas individuals and assertions form the so-called ABox8. A
SHIQ KB encompasses also a role box. A role box (RBox) R consists of a finite
set of transitivity axioms, and role inclusion axioms of the form R � S where
R and S are abstract roles. Therefore hierarchies can be defined over not only
8 When a DL-based ontology language is adopted, an ontology is nothing else than a

TBox. If the ontology is populated, it corresponds to a whole DL KB, i.e. encom-
passing also an ABox.
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concepts but also roles. The semantics of DLs is defined through a mapping to
FOL. An interpretation I = (ΔI , ·I) for a DL KB consists of a domain ΔI

and a mapping function ·I . In particular, individuals are mapped to elements of
ΔI such that aI �= bI if a �= b (Unique Names Assumption (UNA) [24]). Yet in
SHIQ UNA does not hold. Thus individual equality (inequality) assertions may
appear in a SHIQ KB (see Table 2). As a consequence, the (Boolean) CQ/UCQ
containment problem for SHIQ boils down to the (Boolean) CQ/UCQ answer-
ing problem. Also the KB represents many different interpretations, i.e. all its
models. This is coherent with the Open World Assumption (OWA) that holds in
FOL semantics. The main reasoning task for a DL KB is the consistency check
that is performed by applying decision procedures based on tableau calculus.

Table 2. Syntax and semantics of DLs

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)
atomic concept A AI ⊆ ΔI

(abstract) role R RI ⊆ ΔI × ΔI

(abstract) inverse role R− (RI)−

(abstract) individual a aI ∈ ΔI

concept negation ¬C ΔI \ CI

concept intersection C1 � C2 CI
1 ∩ CI

2

concept union C1 � C2 CI
1 ∪ CI

2

value restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}

at least number restriction ≥ nR {x ∈ ΔI | |{y|(x, y) ∈ RI}| ≥ n}
at most number restriction ≤ nR {x ∈ ΔI | |{y|(x, y) ∈ RI}| ≤ n}

at least qualif. number restriction ≥ nS.C {x ∈ ΔI | |{y ∈ CI |(x, y) ∈ SI}| ≥ n}
at most qualif. number restriction ≤ nS.C {x ∈ ΔI | |{y ∈ CI |(x, y) ∈ SI}| ≤ n}

role intersection R1 � R2 RI
1 ∩ RI

2

concept equivalence axiom C1 ≡ C2 CI
1 = CI

2

concept subsumption axiom C1 � C2 CI
1 ⊆ CI

2

role equivalence axiom R1 ≡ R2 RI
1 = RI

2

role inclusion axiom R1 � R2 RI
1 ⊆ RI

2

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

individual equality assertion a ≈ b aI = bI

individual inequality assertion a �≈ b aI �= bI
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Abstract. We identify a shortcoming of a standard positive-only clause
evaluation function within the context of learning biological grammars.
To overcome this shortcoming we propose L-modification, a modification
to this evaluation function such that the lengths of individual examples
are considered. We use a set of bio-sequences known as neuropeptide pre-
cursor middles (NPP-middles). Using L-modification to learn from these
NPP-middles results in induced grammars that have a better perfor-
mance than that achieved when using the standard positive-only clause
evaluation function. We also show that L-modification improves the per-
formance of induced grammars when learning on short, medium or long
NPPs-middles. A potential disadvantage of L-modification is discussed.
Finally, we show that, as the limit on the search space size increases,
the greater is the increase in predictive performance arising from L-
modification.
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1 Introduction

This work aims to improve the automated learning of biological grammars using
Inductive Logic Programming (ILP) tools.

1.1 Biological Grammars

Biological grammars (BG) are patterns in the form of grammars that model bio-
logical sequences: among others, protein sequences. Linguistic approaches can be
used for representing the structure of proteins [11] because their primary struc-
ture can be represented as a sequence of characters from a well defined chemical
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alphabet of only 20 different amino-acids (A, C, D, E, F, G, H, I, K, L, M, N,
P, Q, R, S, T, V, W, Y). These sequences can be of any length, from very small,
up to hundreds of characters long. Formal grammars can define dependencies
in biological sequences because of their declarative and hierarchical nature (e.g.
biological sequences folding up in three dimensional space lead to dependencies
between distant parts). Using grammars to model biological sequences brings
two main advantages to the biologist: first, grammars can be used to annotate
sequences whose function is yet unknown and thus suggest a likely function;
second, because the grammar structure represents common points between se-
quences of similar functions, they could help biologists to understand biological
functions. See Figure 1 for a basic example of a BG parsing a protein sequence.
BGs can take several forms depending on the approach taken. In our experi-
ments, BGs take the form of context free grammars (CFG) (see Section 2.2) and
describe a specific family of proteins (see Section 2.1).

Protein sequences Protein sequences 
(examples)(examples)

MYIAGFSLLLSFLLRRLVTLIS…
MYGTIAGLSFSLSFLRLVIL…
MGYIGFRFSLLSFLLRRVTLS…

Biological Grammar Biological Grammar 
NPP Signal Filler NP Filler
Signal …
Filler …
NP Start Middle End
End Positive R Small | …

MYIAGFSLLLGFKRRQLLRRIAGFKRPQRAGFSLSP

NPP

Signal FillerNPFiller

Start Middle End

Positive Small

A protein folded in 3-dimensional space

a) b)

c)

d)

Fig. 1. Figure 1a) shows an example of how a protein might look like in 3 dimensional
space. Figure 1c) shows a few examples of protein sequences. These are sequences of
the amino acids which make up the proteins, but ignoring the 3 dimensional structure.
Figure 1b) gives an indication of what a biological grammar describing an Neuropeptide
Precursor Protein (NPP) might look like; a set of production rules that can parse a
protein sequence. Figure 1d) shows a very basic example of a parse tree, illustrating
how an NPP sequence could be parsed by an NPP grammar.

In our experiments we learn BGs from examples of protein sequences belong-
ing to a certain family of proteins (see Section 2.1). Protein sequences generally
have highly variable length, which is what sets our task of learning BG apart
from most traditional ILP learning tasks. It is this variable length of examples
in the training data given to the ILP system that is the main focus of this work.

1.2 Biological Grammar Learning with ILP

Muggelton et al [8] first investigated Chomski-like grammar representations for
learning cost-effective, comprehensible predictors of members of biological se-
quence families. They used the ILP tool CProgol [6] to learn grammars describ-
ing neuropeptide precursors (NPPs). Their best predictor made the search for
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novel NPPs more than one hundred times more efficient than randomly selecting
proteins for synthesis and testing them for biological activity. Our work takes
its roots in the approach of [8] as we use definite clause grammars DCG [9] (see
Section 2.2) and we also use a subset of the NPP dataset used in [8](see Section
2.1). Bryant et al. [1,3,2], which also takes its roots in the approach of [8] used
the ILP tool Aleph [12] because Aleph is a modular system, it is easier to modify
and gives a large number of options. Our work also uses Aleph as we also need
the ability to customize the clause evaluation functions and the clause coverage
computation (see Section 3.4).

1.3 Hypothesis

The hypothesis that we want to test in this work is as follows:
When using the generic ILP system Aleph to learn biological grammars de-

scribing proteins of the NPP family, then the predictive performance of these
grammars can be improved by estimating the quality of a learned clause through
an evaluation function that takes into account the length of the examples in the
training data.

1.4 Justification

To decide between two models that equally well describe the data, the minimum
description length principle (MDL) [10] suggests that I(M |E) (which is the de-
scription length I of the model M, given the examples E ) should be minimized.
In our experiments we consider I(M |E) to be the sum of the description lengths
of the model I(M) and the examples encoded through the model I(E|M). An
approximation to this principle is to estimate the compression that would be
achieved by encoding the examples with the model [13,5]. To estimate this com-
pression, the size of the examples that would be encoded by the model has to
be known. Under the assumption that each example has the same length, which
is usually the case, their individual length can be neglected and a simple count
of covered examples can be used to estimate the compression achieved. How-
ever if we are learning BGs, the examples given are biological sequences, which
often have variable length. In that case the length of each individual example
has an undeniable impact on the total size of examples encoded through the
model. It then becomes clear that the length of individual examples should not
be neglected while estimating the compression achieved by a model. We want to
apply this idea to an evaluation function that is to evaluate a grammar clause
during learning. Such an evaluation function would use the size of the clause and
the size of all examples that are covered by that clause to evaluate the perfor-
mance of the clause. To the knowledge of the authors there has been no previous
work on positive-only clause evaluation functions, used in ILP, that consider the
length of training examples. Evaluation functions that estimate the compression
achieved by a model are often called compression measures.
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2 Experiment Design

In our experiments we run the ILP tool Aleph [12] on the NPP datasets de-
scribed in Section 2.1. For each of those datasets we use several different clause
evaluation functions (as described in Section 3) and observe the differences in
performance. The results of the training and testing are recorded and subse-
quently summarized in Section 4.

2.1 Data Sets

Dataset 1 - Whole set
For the first set of experiments we used a part of the human Neuropeptide Pre-
curser Protein (NPP) dataset which was used in [8]. The experiments conducted
by [8] involved, among others, the inference of BGs on a set of NPP sub-sequences
called middle (henceforth denoted as NPP-middles). In this work, we will only
consider the NPP-middles because these are most interesting in relation to our
hypothesis (Section 1.3). First, the NPP-middles are considerably longer than
any of the other NPP parts which makes the induction of a grammar describing
them a more challenging task, and second, they are also the only NPP sub-
sequences that display high variations in length; our NPP-middles range from 5
to 95 amino acids. This dataset consists of 76 positive examples, 2908 random
examples and some Background Knowledge (BK).

Dataset 2 - Training data grouped by length
To see if the evaluation functions perform differently for longer or shorter exam-
ples we decided to split up the dataset into several parts and conduct a second set
of experiments. We took the dataset discussed in the previous paragraph and split
it into three disjoint subsets, based on the length of positive examples, effectively
creating three separate datasets. We denote these three subsets as follows: NPP-
middles-short, NPP-middles-medium and NPP-middles-long. The intention was
to split the set of positive examples into three sets containing more or less the same
number of examples. The first subset, NPP-middles-short, contains 24 examples
each of length (number of characters) l < 13. The reason why this set contains
only 24 examples instead of 25 or 26, as seems logical with 76 total positive exam-
ples, is because we set a length threshold of 13 in order to prevent the examples
of length 13 being split between two subsets. The second subset, NPP-middles-
medium contains 26 examples with 13 ≤ l ≤ 29. The third subset, NPP-long con-
tains 26 examples with l > 29. The random examples were split up in the same
way according to length of their examples, using the same cut-off values that were
used for the positive examples. This results in NPP-middles-short containing 908
random examples, NPP-middles-medium containing 864 random examples and
NPP-middles-long containing 1136 random examples.

Background Knowledge (BK)
The BK in this dataset consists of general molecular biology knowledge which
can be considered relevant for any protein grammar inference process. The BK
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contains amino acid letters and their physio-chemical properties (as first pro-
posed by [4], and also used by [8]) and gaps. The purpose of gaps is to match
parts of the protein sequence that are not directly relevant to the function or
which cannot be characterized by the provided background predicates, but which
still participate in the overall structure of the molecule [2]. This dataset, includ-
ing the BK, was also used in [3] and [1]. (The datasets and BK can be found
at: www.comp.rgu.ac.uk/staff/tm/materials/ILP08/) The set of random exam-
ples may contain protein sequences that would be positive, but at the time this
dataset was collected, were still undiscovered as such. Consequently we can-
not treat them as negative examples so we have to use a positive-only learning
approach [7].

A 5-fold stratified cross-validation was performed on all datasets. The stratifi-
cation of the cross validation was based on the length of the examples, ensuring
that all training and test sets include a variety of examples of different lengths.
The same Background Knowledge is used in each experiment.

2.2 Representation of Biological Grammars and Sequences

We are using the ILP tool Aleph to learn biological grammars. All input given
to Aleph is using a Prolog related syntax. The same goes for the induced result,
especially since we might want to use the induced grammar in further tests or
experiments using Aleph or Prolog. The resulting BG, a context free grammar,
is a set of rules that represent a given set of protein sequences. To represent
such a grammar we use a Definite Clause Grammar (DCG) formalism [9] in the
same way as in [8,1,3,2]. DCGs require sequences to be represented by a list,
where each element in this list stands for a letter in the sequence. DCG rules
take such a list as input and pass it on to the predicates that make up the rule.
Each predicate, starting with the first, then matches one or more elements from
the start of the list and returns the rest. This new, shorter list is then in turn
given to the next predicate in the rule. If the last predicate returns an empty
list, then the whole sequence is matched by the grammar rule and we consider
the sequence to be covered by that rule. Aleph learns one rule at the time until
all the examples are covered, and then it puts all the induced rules together to
form the resulting grammar. (See Table 2 on page 183 for a summary of Aleph’s
search algorithm)

2.3 Suitable Performance Measure for an Induced Grammar

In Machine Learning and more specifically ILP, the most popular performance
measure used to evaluate the final result of learning is the predictive accuracy:

accuracy =
TP + TN

TP + TN + FP + FN

where TP stands for true positives, FP for false positives, TN for true negatives
and FN for false negatives However the accuracy of an induced grammar might
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not be a suitable performance measure when learning biological grammars. Our
dataset (see Section 2.1) contains random examples instead of negative ones, so
instead of TN and FN, we get TR and FR, referring to true and false randoms.
These values can still be put in the above formula to compute the accuracy, but
they don’t quite mean the same thing. Our dataset also has a considerable unbal-
ance in the ratio between positive and random examples: 76 positives compared
to 2908 randoms. A consequence of this is that despite covering different num-
bers of the considerably rare positives, induced grammars have a high chance
of being awarded a very high accuracy by excluding most of the abundant ran-
dom examples [8]. To prevent cases where the accuracy could be inconclusive,
we considered other, additional quality measures for the induced grammars.

From the domain of Information Retrieval (IR) we considered precision, recall
and F-measure [14]. Precision in IR is the fraction of predicted positive examples
that are indeed true positives and Recall is the fraction of true positives among
all positives:

precision =
TP

TP + FP
; recall =

TP

TP + FN

In IR these two measures are often used in conjunction with the F-measure,
which is the weighted harmonic mean of precision and recall:

F −measure =
2 · precision · recall

precision + recall

These measures seem appropriate for our domain as well, so we decided to include
them in this work (see Table 4 on page 184).

3 Clause Evaluation Functions

The focus of this work is the evaluation function which the ILP system uses to
evaluate a clause. Such a clause evaluation function gives each accepted clause
a score estimating its quality (Table 2 step 3). After the search is complete, the
clause with the best score is added to the grammar (Table 2 step 4). This section
describes the different clause evaluation functions used in this work. A summary
can be found in Table 1.

Note here that a clause evaluation function and a grammar performance mea-
sure (introduced in Section 2.3) are two distinct things. While a clause evalua-
tion function is used to grade each individual clause during learning, a grammar
performance measure is only used after learning is completed successfully. The
grammar performance measure aims to estimate the future performance of the
entire learned grammar, which consists of a number of clauses.

3.1 Standard Positive-Only Evaluation Function

The standard positive-only learning evaluation score in ILP was devised by
Muggelton [7]:

Score = log (P )− log(
(R + 1)

(Rsize + 2)
)− L

P
(1)
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Table 1. List of all evaluation functions used in this work

(1) Score = log(P ) −log( R+1
Rsize+2 ) − L

P

(2) Score = log(PosCoverage) −log(RanCoverage+1
RLsize+2 ) − L

PosCoverage

(3) Score = log(PosCoverage) −log(RanCoverage+1
Rsize+2 ) − L

PosCoverage

(4) Score = log(PosCoverage) −log(RanCoverage+1
Rsize+2 ) −L

Where P is the number of positives covered; R is the number of randoms covered;
Rsize is the total number of randoms and L is the number of literals in the
hypothesis. This evaluation function has been widely used by the community and
therefore is our benchmark evaluation function. This means that our experiments
aim to find a function that outperforms this one.

3.2 L-Modification of the Standard Positive-Only Evaluation
Function

Function (1) does not consider the length of individual examples, so to put our
hypothesis to the test we had to modify it. What we propose is to replace any
variable in evaluation function (1) that would refer to numbers of examples (may
that be covered, not covered or total) with a different variable that instead refers
to a modified value which takes into account the length of examples. This means
more precisely that instead of feeding P and R to to the evaluation function, we
replaced all their occurrences in (1) with PosCoverage and RanCoverage respec-
tively. PosCoverage is the sum of the lengths of all covered positive examples and
RanCoverage is the sum of the lengths of all covered random examples. These
changes combine the idea of existing pos-only evaluation functions with the idea
of considering the length of examples. Henceforth we denote such a change of
variables as L-modification. In addition to P and R, the variable Rsize in (1)
also refers to a number of examples: the total number of random examples in
the training data. As the name of the variable suggests, this number intends to
represent the size of the set of randoms, so within the context of this work, it
makes sense that we also apply our L-modification to this variable. This means
that we replace Rsize with RLsize, which is the sum of the lengths of all random
examples in the training data. Applying these modifications gives us:

Score = log(PosCoverage)− log(
RanCoverage + 1

RLsize + 2
)− L

PosCoverage
(2)

3.3 Further L-Modified Evaluation Functions Used in This Work

Although our experiments will focus on evaluation functions (1) and 2 we also
ran our experiments on two other modified versions of evaluation function (1).
The first of these only replaces P and R with PosCoverage and RanCoverage
respectively with no further changes:

Score = log(PosCoverage)− log(
RanCoverage + 1

Rsize + 2
)− L

PosCoverage
(3)
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The second one also takes into account that the value of PosCoverage is 10 to
60 times larger than P, therefore the last term of function 3, ( L

PosCoverage ), pos-
sibly leads to the clause length L greatly losing influence on the score. Therefore
we tried giving L more weight by not dividing by PosCoverage:

Score = log(PosCoverage)− log(
RanCoverage + 1

Rsize + 2
)− L (4)

3.4 Implementing L-Modifications

Three of the four evaluation functions in this work use the L-modified coverage
instead of the traditional coverage. Aleph, the ILP tool we are using does not
have features that can access the length of individual examples in the training
data. However it allows for user defined clause evaluation functions. Therefore,
instead of having Aleph calculate the coverage of a clause by itself, we had it use
customized predicates to compute the coverage during clause evaluation. These
predicates parse examples through the clause and return the modified coverage.
They still respect the search algorithm that Aleph applies (see Table 2), i.e. they
only parse those examples that are still uncovered (not yet deemed redundant).
In our experiments, when using the clause evaluation function (1) our predicates
calculate the number of positive and random examples covered, just like Aleph’s
functions would, however for all subsequent experiments, using functions (3),
(4) and (2) our predicates calculate the L-modified coverage, e.g. the sum of the
lengths of all the covered positive or random examples. Some of the predicates
that were used in this work to compute the L-modified coverage can be found
in Appendix B on page 190.

Table 2. A simplification of the basic Aleph algorithm

1. Select a positive example to be generalised. If none exist, stop.
2. Build the bottom clause; the most specific clause entailing the example selected.
3. Search; Find a clause more general than the bottom clause.

(Construct a search tree, each node containing a clause which consists of a subset
of the literals in the bottom clause. Search for the clause with the best score)

4. Remove redundant. The clause with the best score is added to the grammar.
All examples made redundant are removed. Return to Step 1.

4 Results

Table 3 shows the results obtained from running evaluation functions (1) and
(2) on all datasets. From the results of the 5-fold cross validation we get the sum,
average and standard deviation of TP (true positives), FP (false positives), TR
(true randoms) and FR (false randoms).

Table 4 shows the evaluation of all the data collected in Table 3; the accuracy,
precision, recall and F-measure of a theory. Definitions of these performance
measures, can be found in Section 2.3.
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Table 3. Summary of the results on all datasets (see Section 2.1) - The first leftmost
column indicates which evaluation function was used (see Section 3 or Table 1), all the
subsequent columns give the sum, average and standard deviation (std) of true positives
(TP), false positives (FP), true randoms (TR) and false randoms (FR) observed during
testing

Experiments conducted on NPP-middles

evalfunc TP FP TR FR
sum av. std sum av. std sum av. std sum av. std

(1) 50 10 2.12 652 130.4 72.44 2256 451.2 72.28 26 5.2 2.39

(2) 39 7.8 2.39 29 5.8 1.92 2879 575.8 1.79 37 7.4 2.61

Experiments conducted on NPP-middles-short

(1) 20 4 1.00 62 12.4 9.13 846 169.2 8.93 4 0.8 1.10

(2) 15 3 0.71 5 1 1.00 903 180.6 1.34 9 1.8 1.10

Experiments conducted on NPP-middles-medium

(1) 13 2.6 2.30 76 15.2 10.83 788 157.6 10.83 13 2.6 2.61

(2) 14 2.8 1.64 9 1.8 1.92 855 171 2.35 12 2.4 1.82

Experiments conducted on NPP-middles-long

(1) 6 1.2 0.84 170 34 26.45 966 193.2 26.48 20 4 0.71

(2) 2 0.4 0.55 19 3.8 2.68 1117 223.4 2.88 24 4.8 0.8

Table 4. Evaluation of the results, derived from the values given in Table 3 - The
first leftmost column indicates which dataset the values are referring to, the following
column states which evaluation function (evalfunc) was used (see Section 3 or Table
1) and the next columns give the average of accuracy, precision, recall and F-measure
observed during testing

Dataset evalfunc av. Accuracy av. Precision av. Recall F-measure

NPP-middles (1) 0.77 0.08 0.66 0.14

(2) 0.98 0.57 0.52 0.54

NPP-middles-short (1) 0.93 0.24 0.83 0.38

(2) 0.98 0.75 0.62 0.68

NPP-middles-medium (1) 0.90 0.15 0.50 0.23

(2) 0.98 0.61 0.54 0.57

NPP-middles-long (1) 0.84 0.03 0.23 0.06

(2) 0.96 0.10 0.08 0.09

5 Discussion

5.1 Effects of the L-Modifications

Dataset NPP-middles
We use the experiment using clause evaluation function (1) as our benchmark and
compare the results of the other experiments with this one. The main change that
we can observe when looking at Table 3 is that the FP rate has been decreased
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drastically by the L-modified experiments. FP of 5.8 is an acceptable value, even
within the positive-only learning NPP domain. It is mainly a consequence of this
change in FP that the accuracy was increased from 0.77 to 0.98.

However, as we suggested in Section 2.3 this high accuracy could be mislead-
ing. The precision has been increased from 0.08 to 0.57 which is a considerable
change. (1) has an extremely low precision as on average 130 random exam-
ples are accepted by the theory learned. This is over 25% of the total randoms
provided in each fold.

The recall has been slightly decreased from 0.66 to 0.52. The reason for this is
that the L-modified experiments produce theories with lower TP: 7.8 as opposed
to 10 by our benchmark experiment.

Finally, the F-measure, the weighted harmonic mean of precision and recall,
is increased in the L-modified experiments: from 0.14 to 0.54. We see this as a
significant improvement.

Dataset NPP-middles-(short,medium,long)
Concerning all 3 subsets of this dataset, the same observations can be made
as in the previous paragraph, using NPP-middles: the accuracy increases as a
consequence of FP decreasing, the precision improves as well, the recall decreases,
except using NPP-middles-medium where is increased by only 0.04 and the F-
measure finally increases as well.

However a few additional observations can be made here. Looking at Figure
2 we can see that for each subset of the NPP-middles (short, medium and long)
the performance of the L-modified evaluation functions is higher than that of
our benchmark function (1). Also, generally, for each measure, the performance
is better for shorter examples than for longer ones. The reason for this is that it
is easier to learn rules covering shorter examples than longer ones, which makes
sense.

Another observation that can be made when looking at Table 4 is that
for datasets NPP-middle-short and NPP-middle-medium the accuracy and F-
measure are higher than for dataset NPP-middles, even without L-modification.
This is quite interesting as one would not expect this to be the case. Clearly,
datasets NPP-middle-short and NPP-middle-medium, being subsets of NPP-
middles, contain less examples than NPP-middles, so one would expect the per-
formance to be lower. What sets the smaller datasets apart from the larger one
is that the variation in the length of examples is different. This seems to indi-
cate that the greater variations in the length of the examples contained in the
NPP-middles dataset, compared to that in each of its subsets, make it harder
for Aleph to generate hypotheses with similar performance.

5.2 Comparing Clause Evaluation Functions (3), (4) and (2)

In this work, we limited the reporting of results to evaluation functions (1), which
served as our benchmark, and (2), which is the main contribution of this work.
However as we stated in Section 3.3 we also ran all experiments reported using
evaluation functions (3) and (4). The results of using these functions were not
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Fig. 2. For all three parts of dataset NPP-middles-(short, medium and long) the per-
formance in terms of F-measure of each of the four evaluation functions is plotted

reported in Tables 3 and 4 because they were very similar, and in many cases
identical to the outcomes of the experiments using function (2). Furthermore
when we learn on the entire NPP-middle dataset, without any cross validation,
then the grammars learned using these 3 evaluation functions are in fact identi-
cal and the search constructs the same number of nodes for these 3 experiments.
There is a slight variation in time needed which can be accounted for by different
computation times of the slightly different evaluation functions. We can conclude
that although there is a significant difference in performance when introducing
the length of examples into the clause evaluation function, there is no further
advantage to be gained by considering the differences between (2), (3) and (4).
The most likely explanation for this is that the first term of these L-modified
equations, log(PosCoverage), is the dominant term, especially in these experi-
ments where we deal with large values of PosCoverage. As a consequence, the
second and third terms in the L-modified equations have only a minor influence
on the score.

5.3 Analysis of Induced Grammars

We have already noted that using our L-modified clause evaluation function
increases the accuracy and F-measure of the learned grammars. However we
made other observations that need mentioning. Table 5 contains an analysis of
the grammars that were learned using the NPP-middle dataset, without any
cross validation.

Applying L-modification to the evaluation function increases the number of
rules in the learned grammars. This is the case because more rules cover only one
positive example each (see Table 5 column 4). So even though the grammars are
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Table 5. Details of the grammars induced using the NPP-middle dataset, without any
cross validation - The first column indicates which evaluation function from Section 3
was used while inducing the grammar, the second column gives the average number of
rules that make up the induced grammars when learned using 5-fold cross validation,
the third column gives the number of rules that make up the induced grammar when
learned on the whole dataset and the fourth column gives a count of how many rules
were induced that only cover one positive example when learned on the whole dataset

evaluation av. # of rules # of rules in # of rules
function per fold whole dataset covering 1 ex.

(1) 15 14 3

(2) 30.6 35 22

better at describing the positive examples (cover a lot less random examples),
they are more complex. This could be an indication that the grammars are more
likely to be overfitted to the dataset. It is worth noting that those rules that cover
only one example usually cover a very large example. Also, rules that cover only
one example could provide useful information to the experts of the domain as
they may indicate which part of a protein is of biological significance.

5.4 Total Time

In our experiments we also recorded the total time needed for the induction pro-
cess. In general, experiments using functions (2), (4) and (3) took a lot longer
than those using function (1). Even though computing our L-modified cover-
age requires a little more computational power, it is more likely that the large
increase in running time is a consequence of more nodes being constructed by
the search, which in turn results in the increase of performance of the resulting
grammars.

In order to confirm this we ran an additional set of experiments using the
NPP-middles dataset. This time we used a number of different parameters for
setNodes, the Aleph setting that controls how many nodes are constructed dur-
ing each search. We used the following values: 100000 (the value we used in all
other experiments), 50000, 10000, 5000 and 1000. We then recorded the total
number of nodes constructed for each learning task (the sum of all nodes con-
structed during each search). Figure 3 shows the graph plotting the performance
of the evaluation functions against the total number of nodes constructed. We
can observe that more nodes are constructed to learn grammars with better per-
formance. In addition to that, the rate of increase is greater for the L-modified
evaluation functions than for the benchmark function. This shows that indeed,
for larger search spaces, the L-modified evaluation functions result in grammars
with a higher F-measure. There are two factors that are responsible for the search
space being larger when using L-modified evaluation functions:

1. If L-modified clause evaluation functions are used to calculate the score for a
clause, the search is not as easily satisfied and more iterations of the search
algorithm are called before a clause is finally added to the resulting grammar.
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Fig. 3. For each evaluation function (evalfunc) the performance is plotted against the
total number of nodes constructed at the end of induction

2. As we have shown in Section 5.3, grammars learned using the L-modified
scores consist of more rules than their unmodified counterpart, which means
that more examples are chosen to be generalized by step 1 of the search
algorithm (see Table 2).

6 Conclusions

We have shown that when learning on the NPP-middle dataset, the L-
modifications we propose do improve the performance of the induced grammars,
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both in terms of accuracy and F-measure. Splitting the NPP-middle dataset in
3 disjoint subsets and learning on those, we have shown that our L-modification
improves performance of induced grammars for short, medium and long exam-
ples. Within this context, we have also shown that it is generally harder to learn
rules covering longer examples than shorter ones. By observing the outcomes of
learning on NPP-middle dataset and comparing them with those that we can
observe when learning on each of its subsets (NPP-middle-short, -medium and
-large) we conclude that it is harder for the ILP tool used in this work (Aleph) to
learn from examples that have a high variation in their lengths. Finally, by run-
ning several experiments setting different limits for the amount of nodes allowed
to be constructed during learning, we have shown that for larger search spaces,
the L-modified evaluation functions result in grammars with a higher F-measure
and that the rate of improvement is higher using L-modified functions.

Considering all the above, we can conclude that the L-modification proposed
in this work does indeed improve the performance of evaluation function (1).
Therefore we would expect the L-modification to improve other clause evaluation
functions as well, so now there is a need to apply this approach to more than
one standard clause evaluation function.

7 Future Work

Applying L-Modification to Different Evaluation Functions

To fully support our claims that the L-modification proposed in this work im-
proves the grammars that are learned, there is a need to apply this approach to
other standard clause evaluation functions. However, this is complicated by the
fact that so far, we were dealing with positive-only learning. Evaluation func-
tions meant for positive and negative learning are more common. We therefore
propose to investigate how to apply this approach of L-modifying the coverage
computation to clause evaluation functions which are tailored to positive and
negative learning.
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Appendix A: Materials

Most of the materials used in this work, dataset and input files for Aleph can be
found online at www.comp.rgu.ac.uk/staff/tm/materials/ILP08/.

Appendix B: Code for L-Modified Coverage Computation

Predicate: Compute Lmodcover/3

This predicate computes the L-modified coverage of a clause on all remaining
examples of a certain type, where type stands for either positive or negative
examples. In our experiments negative examples were substituted by random
examples (see Section 2.1 page 179).

%used as: compute_Lmodcover(Type,Clause, L-modifiedCoverage)
compute_Lmodcover(Type,(Head:-Body), Cov) :- !,

’$aleph_global’(atoms_left,atoms_left(Type,Left)),
compute_Lmodcover(Type, (Head:-Body), Left, 0, Cov).

compute_Lmodcover(Type, ClauseWithoutBody, Cov) :-
compute_Lmodcover(Type,(ClauseWithoutBody:-true),Cov).

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
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compute_Lmodcover(_, _, [], Cov, Cov).
compute_Lmodcover(Type, Clause, [Inter|Rest], Cov, CovRes) :-

compute_Lmodcover_interval(Type, Clause, Inter, Cov, Cov1),
compute_Lmodcover(Type, Clause, Rest,Cov1,CovRes).

compute_Lmodcover_interval(_, _, Start-Finish, Cov, Cov) :-
Start > Finish, !.

compute_Lmodcover_interval(Type,Clause,Start-Finish,Cov,CovRes) :-
example(Start, Type, Atom),

%get the L-modified coverage SeqLength for this example:
parse_exple_for_length(Clause, Atom, SeqLength),

%add L-modified coverage for this example to the total coverage:
Cov1 is Cov+SeqLength,
Start1 is Start+1,
compute_Lmodcover_interval(Type, Clause, Start1-Finish,

Cov1, CovRes).

Predicate: Parse exple for length/3

This predicate parses an example and returns the length of the sequence if it
was parsed sucessfully. If it cannot be parsed, 0 is returned.

%used as: parse_exple_for_length(Clause,Example,SequenceLength)
parse_exple_for_length((Head:-Body),Example,SeqLength) :-

% the \+(\+()) are needed to ensure Head and Example
% do not stay unified after the call
\+((\+((Example=Head, call(Body))))),
Example=middle(MidSeq,[]),
length(MidSeq,SeqLength), !.

parse_exple_for_length(_,_,0).
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Abstract. Hidden Markov Models (HMM) have been successfully used
in applications such as speech recognition, activity recognition, bioin-
formatics etc. There have been previous attempts such as Hierarchical
HMMs and Abstract HMMs to elegantly extend HMMs at multiple levels
of temporal abstraction (for example to represent the user’s activities).
Similarly, there has been previous work such as Logical HMMs on ex-
tending HMMs to domains with relational structure. In this work we
develop a representation that naturally combines the power of both rela-
tional and hierarchical models in the form of Logical Hierarchical Hidden
Markov Models (LoHiHMMs). LoHiHMMs inherit the compactness of
representation from Logical HMMs and the tractability of inference from
Hierarchical HMMs. We outline two inference algorithms: one based on
grounding the LoHiHMM to a propositional HMM and the other based
on particle filtering adapted for this setting. We present the results of
our experiments with the model in two simulated domains.

1 Introduction

Activity recognition is a problem that has long been the focus of researchers and
has a wide range of applications from surveillance[8] to intelligent interfaces[11]
to assisting the elderly[1]. Accordingly, several kinds of approaches ranging from
domain-specific hand-coded solutions to the more general Hidden Markov Mod-
els(HMM) have been proposed for such activity recognition problems. Hidden
Markov Models and their several extensions are among the most popular meth-
ods for activity recognition. The main advantage of HMMs and their extensions
lies in the fact that they define a clear probabilistic semantics for the problem.
Also, efficient inference algorithms have been proposed for HMMs making them
very attractive for this problem. The different extensions of HMM like the Hier-
archical HMM (HHMM) [5] and abstract HMMs (AHMM) [3] are being widely
used in activity recognition for a variety of applications.

The main drawback of HMMs is that they do not take into account the com-
plete structure of the problem. The objects in the domain may be related by
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specific relationships and these relationships govern the action that the user
performs in the current state. For example, a user is more likely to send a paper
that he is writing to his co-authors and not to random email addresses. Also,
since the HMMs are inherently propositional, they do not allow for general-
ization among the objects of the domain. For instance, the models cannot be
shared among multiple users of the desktop, as a separate HMM needs to be
constructed for every user in a propositional setting. Also in several cases, the
user might decompose his goal of submitting a proposal or writing a paper by
a similar methodology of running experiments, writing the paper, writing the
abstract, sending it to one’s co-authors etc.

The goal of this work is to extend the HMM with a logical model that al-
lows for generalization of the objects in the domain and a hierarchical model
that allows for richer structure of the user’s tasks. The use of logical models will
allow us to specify the models at an abstract level that can later be instanti-
ated with specific instances and to perform inference on them. Also, it allows
parameter sharing between the objects of the same type thus requiring a smaller
number of examples for learning. The hierarchical structure will enable us to
elegantly represent the user’s goal-subgoal decomposition and allows for efficient
inference. Kersting et al.[7] earlier introduced a logical extension to HMMs. In
this paper, we extend their work in 2 ways: allowing conditional transitions and
more importantly incorporating hierarchies in the logical models.

Our first contribution is to introduce the Logical Hierarchical HMMs (LoHiH-
MMs) and outline their syntax and semantics. In many real-world applications,
the user chooses his action based on some conditions in the environment. For
example, a user who goes shopping might prefer the nearest store to shop from.
If the product that he wants to buy is not available in that store, he might go to
another one. If it was available, he might buy the product and return home. The
availability of the product can be observed by looking at the inventory. But, it
is not possible to observe the mental state of the user. Hence, some parts of the
state space are completely observed while some others are not. In our model, we
consider the current state as having two components: an observable component
(called the world state) and an unobservable component (called the user state).
Note that the names of world and user are specific to our applications but they
mean the observable and the unobservable parts of the state space. One of our
critical assumptions is that the world state is completely observable. This would
make it possible to perform tractable inference (as we show later in the paper)
in large domains. In our model, we naturally model such conditional transitions
that take place based on the observable part of the state space.

Logical models have generally been unrolled to their ground formulations and
inference was performed using these ground models. We present an algorithm
for unrolling the LoHiHMM to the corresponding ground HMM which will make
it possible to perform exact inference in the model. But, in very large domains,
the state space of the ground HMM could be prohibitively large and can make
the inference hard. HMM inference is quadratic in the number of states and a
very large state space can make the inference impractical if not infeasible. Hence,
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in this work, we avoid complete unrolling of the LoHiHMM. Our second major
contribution is to adapt particle filtering to this logical setting. The filter avoids
considering all the possible states by exploiting the conditions in the transitions
and restricting the set of possible next states. We compare the performances of
the exact inference on the ground HMM and the particle filter on 2 simulated
domains: a grid world domain where the user has to navigate the grid to achieve
his tasks and a kitchen domain where the user follows some recipes to cook his
dishes. The results demonstrate that the particle filter performs comparably to
that of the exact HMM with much less overhead.

The rest of the paper is organized as follows: the next section provides the
background for the work. Section 3 first presents the LoHMM, its syntax and
semantics and then extends them to the Logical Hierarchical HMMs. Section
4 outlines the inference algorithm based on particle filtering and the algorithm
for unrolling it to a ground HMM. Section 5 presents the experimental results
on the domains. The final section concludes the paper by reviewing the related
work and outlining some areas of future research.

2 Background

In this section, we briefly review the background work namely, HMMs, Hierar-
chical HMMs, Particle Filtering and the previous work on Logical HMMs.

Hidden Markov models (HMMs) are used to model systems that follow a
Markov process which is essentially a process with no memory. In a Markov
process, the next state of the system is independent of the past states given
its current state. In HMMs, there are 2 kinds of variables: a state variable that
follows a Markov chain and an observation variable whose value is generated by
the current state. As the name implies, in an HMM the states are assumed to be
unobserved(hidden). Hence, one of the important tasks is to infer the distribution
of the current state conditioned on the values of the observations (known as
filtering). Formally, an HMM is defined using the 5-tuple 〈S, Π, O, Ω, I〉, where S
is a set of states, Π(s′|s) is the next-state distribution, O is a set of observations,
Ω(o|s) is the probability of observing o when in state s and I is the initial state
distribution. The HMM starts in one of the states s chosen according to I(s),
at every step transitions to next states according to Π , and emits observation o
with probability Ω(o|s).

It is clear that while considering the problem of activity recognition, the goal
is to infer the distribution over the states given the current set of observations
p(s|o1:t). Hence the activity recognition problem is posed as performing inference
in an HMM. Although a HMM is a very good choice for the problem, there
are applications where the number of states can be arbitrarily large. It is also
difficult to model situations where some states take more than one time-step
to be executed. For instance, editing a particular document might take several
time-steps and it is not possible to fix the number of time-steps in advance. In
addition, the user’s tasks could have a well-defined hierarchical structure that can
be exploited if captured explicitly by the model. Though these can be captured
by a HMM, the structure in the problem cannot be exploited efficiently.
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Hierarchical HMMs[5] extend HMMs to include a hierarchical structure for the
states. Each state in a HHMM is a self-contained probabilistic model. One way
to understand a Hierarchical HMM is to think of each state of the HHMM being
an HHMM in itself. So when the HHMM transitions to the current state, the
sub-HHMM is activated which in turn activates a HHMM at the lower level. This
would mean that at each state, the HHMM will emit a sequence of observation
symbols rather than a single symbol. The key difference to a normal HMM is the
notion of end states. Each sub-HMM has a set of end states that can terminate
the HMM at the current level and return the control to the calling state of the
parent HMM.

Any HHMM can be converted to a HMM[10]. The state of the HMMs corre-
spond to the state stack of the HHMMs(S1:D), where D is the number of levels
of the HHMM. If the HHMM structure is a tree, it would imply that there are
no repetitive substructures. The corresponding HMM then contains one state
for every combination of the parent and child states. If the HHMM has repeated
substructures, they have to be duplicated in the HMM resulting in a large model.
We refer to [2],[10] and [5] for more details on converting a HHMM to a HMM.

Since in large HHMMs (or even large HMMs), performing exact inference
might be impractical, sampling methods became popular. The key innovation
in these methods is to focus the set of samples on high probability regions of
the state space i.e., generate more samples in high posterior regions. Among the
sampling methods, particle filtering[4] methods are very popular. The general
approach to particle filtering works as follows: Samples are generated according
to the prior distribution and propagated to the next step according to the tran-
sition distribution. The samples are then re-weighed according to the observed
evidence probabilities and new samples are generated. We present the generating
distributions later in the paper when we discuss the particle filter for the logical
setting.

Logical HMMs: Given that the HMMs are inherently propositional, Kersting
et al. introduced Logical HMMs [7] to combine ideas from SRL[6] and dynamic
models. In their framework, the states of the HMM are abstract states rather
than propositional states. An abstract state consists of a predicate name and
a set of parameters that can be instantiated with constant ground values. The
transition distribution in the logical HMM now consists of two kinds of distri-
butions: an abstract transition distribution that specifies the probability of the
next abstract state given the current abstract state and a selection distribution
that specifies the probability of the instantiation of the parameters for the cur-
rent state. In their work, the observations are generated from state transitions
and the selection distribution is specified using a Naive Bayes function.

3 Logical Hierarchical Hidden Markov Models

In this section, we present our formalism of LoHiHMMs. Since this formalism
extends the HMM in two dimensions, we present the logical extension (LoHMMs)
as a first-step and later extend it to include hierarchies. We refer to our logical
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extension as LoHMMs and that of Kersting et al. as Logical HMMs. We contrast
our formalism to theirs after we introduce our model.

3.1 LoHMMs

Consider the HMM presented in Figure 1. In this example, a user receives a
document to edit through an email, edits the document and sends it back to the
sender. The semantics is that when the conditions in the arcs are satisfied the
HMM transitions to the next state with the probability indicated by the number
on the arcs. In this section, we first define the states and transitions of this HMM
and then formally define LoHMM. In our model, the state in the model consists
of two components, the state of the user and the state of the environment. The
state of the user is assumed to be a single ground predicate that indicates the
activity of the user. The user is restricted to be in only one state at any given
instant of time. The state of the environment could be a conjunction of several
predicates. An example of user state is edit(D), where edit is the logical predicate
and D is the parameter (variable) associated with this state. The environment
state could include information about the current time, the deadlines, the set of
projects that the user is involved with or as in Figure 1 whether a request for
edit has been received etc.

State: A state consists of two components: the user state which is a predicate
that represents the current activity of the user and the environment state which
is a set of predicates describing the environment. We aim to capture transitions
between user states conditioned on some states of the environment. This will
enable us to model the user’s activity conditioned on the context of the execu-
tion. For example, if the document that the user is currently editing is a long
document, the user might prefer to print the document, while if it is a short one,
the user might just read it off the monitor. Observing the length of the document
will enable us to predict the user’s next action. Though there are several ways

Start SaveAs(D1,D)
Recv_Edit_Request(E), Attach (E,D1)

1.0

Edit(D)

1.0

NotEdited(D)

1.0

Edited(D)
1.0ReplyTo(E,E1)1.0Attach(E1,D)

Send(E1)

1.0

Fig. 1. A Logical Hidden Markov Model for editing a document. The logical conditions
on the arcs indicate the conditions under which the transitions take place. The numbers
on the arcs indicate the probability of the transition.
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Table 1. Structure of an Logical transition in our model. The current user state is
A(X,Y ) and transitions to one of the successor states based on the condition and
logical transition probability.

A(X, Y ) �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if C1
1(X, Y ) ∧ C1

2 (Y, Z)... then

{
p1
1 : B1

1(X, Z)

p1
2 : B1

2(Y, Z)

else if C2
1 (X, Y ) ∧ C2

2(X, Y, Z)... then

{
p2
1 : B2

1(X, Z)

p2
2 : B2

2(Y, Z)

else ...

of modeling the conditions in the transitions between the states, we use a model
that is similar to decision lists or the case statements in programming languages.

Associated with each state predicate we can define a set of observation predi-
cates and an associated observation distribution. The observations in our model
are similar to the state predicates. The observation consists of a predicate name
and a set of variables. The observation may or may not consist of the same
variables that are present in the state predicate.

The transitions in our model are called logical transitions and are of the form
presented in Table 1. The transition occurs between the current state of the user
(called as source user state) and the next state of the user (called as target user
state) conditioned on some of the predicates of the environment. As shown in
the figure, there could be several logical test predicates that can be conjunctions
of several predicates (shown as C in the figure) based on which transition could
take place.

The most important constraint is that exactly one branch of the transition will
be always taken for the given state. Once a particular branch, say k, evaluates to
true and the corresponding branch is taken, the target atom is chosen according
to the transition distribution (called ‘’logical transition distribution”) pk for the
current branch k. pk is a well-defined distribution i.e,

∑
i∈S pk

i = 1, where S is
the set of target abstract states for the given logical transition. In the statement
presented in Table 1 for instance, p1

1+p1
2 = 1. An example transition is presented

in Table 2. In this example, the user downloads a document P and if it is a
long paper, the user prints the document with a probability 0.9 or reads it off
the webpage with a probability 0.1. If not, he reads from the webpage.

The branches can be understood as similar to decision lists in programming
languages. Given the instantiations of the current user state, the branch that
first evaluates to true is taken. Once a branch is chosen, the logical transition
distribution is used to choose the next user state predicate. The last branch has
the key word else and has no conditions. It is a default one that will be taken if
the other branch conditions fail to evaluate to true (for example see Table 2).
This is to ensure that the conditions in at least one branch would evaluate to
true and hence one branch will always be taken for the given user state.

Logical Transition: A logical transition consists of the current user state S as
the source and a set of logical predicates of the environment. Corresponding to
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Table 2. Example of a Logical transition. The user prints the document if it is a long
document or reads it off the webpage.

Download(P ) �→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if LongPaper(P ) ∧ URL(Z, P ) then

{
0.9 : Print(P )

0.1 : Read(P,Z)

else if URL(Z, P )
{
1.0 : Read(P,Z)

else
{
1.0 : DoNothing

each predicate is a set of target user states and a corresponding set of probability
distributions called the logical transition distributions. For each of the target
user states, there is an associated instantiation distribution (μ) that specifies
the probability of the values of the variables associated with the target state.
We discuss the instantiation distribution later.

One potential issue is that there could exist several transitions that can be
matched with the current instance. For example, ignoring the conditions there
could be 2 different abstract transitions defined as follows:

A(X, Y ) −→ B(X, Z)
A(x, Y ) −→ C(Y, Z)

The second transition is more specific when compared to the first transition.
If we use a substitution {θ = X/x, Y/y}, we could match the two rules and there
is a question of which transition to choose. In order to avoid multiple matching
rules, we require that these 2 rules are ordered and combined to a single decision
list as follows

A(X, Y )

{
If (X = x) 1.0 : C(Y, Z)
else 1.0 : B(X, Z)

The idea is to encode the more specific instances as well in the transition.
This is natural in our formalism as we always assume that only one branch can
be true for any ground instantiation. This means that no two different logical
transitions can exist with the same predicate name as its source.

Now, we define a generalized LoHMM to consist of set of states S, a set of
observations O and a set of logical transitions Δ. This definition of the LoHMM
is too general for many problems. If we assume that the logical predicates are
unobserved along with the user states, the problem of user activity recognition
includes performing inference over the environment states as well. Hence, we
consider a restricted model in which we assume that the environment states
are completely observed and the user state is assumed to be unobserved. This
assumption is not unreasonable in many domains such as a desktop domain,
video surveillance etc where the effects of the user’s actions in the environment
are completely observable while the user’s mental states are not.
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Definition 1 (LoHMM). A LoHMM consists of

– a set of states S which has two components: the user state Su that is a single
predicate and is unobserved and the environment state Sw that can possibly
consist of many predicates and is completely observed1

– a set of observations O and the associated observation distributions
– a set of logical transitions Δ.

Note that the assumption of the state being composed of the observable environ-
ment states and the unobserved user state predicate makes the inference process
easier. This will enable us to ignore the changes to the environment predicates
and just focus on the changes to the user state. The key thing to note here is that
the logical conditions are the observable part of the state space. Hence given a
current user state, it would be easy to evaluate the different logical predicates
conditioned on the current user state. The LoHMM can be understood as defin-
ing a distribution over the set of ground predicates (interpretations). The ground
interpretation consists of two parts: the user activity interpretation that is not
observed and the environment interpretations that are observed and are fixed
and do not change with time. The transitions can be understood as a stochastic
mapping between two ground interpretations that depends on certain parts of
the state.

Global Variables: There could be some variables in the LoHMM whose value
should not change as the HMM evolves. For instance, consider the example in
Figure 1. The user, after editing the document, has to reply to the email in
which he received the request to edit. This means that the value of the variable
E once set to the value of the email that has the request should not be changed.
In our model, some of the variables are declared as global and their values do
not change over time.

Substitution: Substitution in LoHMMs is defined exactly as in first-order logic.
A substitution θ is defined as assignment of values to all the variables in the
LoHMM. The set of variables is the union of all the variables in all the predicates
of all the user states and the environment states.

Ground HMM: A ground HMM is a HMM constructed by substituting the
values for all the variables of a LoHMM. We refer to the user state that has
been substituted for its variables as an instantiated user state. The state-space
of this ground HMM consists of two components: the instantiated user states
and the global list. The transition distribution specifies a distribution over the
next ground user states and the values of the global variables.

Theorem 1 (Existence of a ground HMM). A ground HMM can be con-
structed for every LoHMM.

1 The names user state and environment state are chosen for the activity recognition
purposes only. They mean the unobservable and observable part of the state space
in general.
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The proof is trivial and follows from the theorem in Kersting et al [7] and we omit
the proof for brevity. The motivation behind stating the existence of a HMM is
that, since a HMM defines a unique distribution over the trajectories, it follows
that the LoHMM also defines a unique distribution over the trajectories. This
ensures that there is a well-defined model-theoretic semantics for the LoHMM.
In fact, HMMs are a special case of the LoHMMs with the states having an
arity of zero, no conditional branches and no instantiation probability. Hence
LoHMMs generalize HMMs.

We now present the relationship to the Logical HMMs of Kersting et.al [7].
In their model, there was an abstract transition distribution p, which chooses
the target predicate to transition to. In our model, first the logical conditions
are evaluated, the corresponding branch is taken and then the target predicate
is chosen according to the distribution pk. Their model does not allow for con-
ditional branches. Thus their model can be considered as a special case of our
LoHMMs where the default (else) branch is always taken. Recall that since they
restrict their states to be predicates as well, the conditions cannot be captured
in their Logical HMMs. Yet another difference is the presence of the global vari-
ables in our model. In their model, a variable has to be present in all the states
for it to retain its value. Declaring a variable as global is useful in particular for
the hierarchical setting as we explain in the next section.

3.2 LoHiHMMs

In many real-world situations, users solve difficult problems by decomposing
them into a set of smaller ones. For example, proposal writing might involve
writing the project description, preparing the budget, and then getting signa-
tures from proper authorities. The tasks to be completed by the user have a nat-
ural hierarchical structure. To capture this kind of knowledge using LoHMMs,
the state predicate should include the user’s current task at all the levels of
the hierarchy. This is not very elegant and it would be difficult for the domain
expert to specify this kind of LoHMM; also, the inference process can be very
difficult due to the explosive state space. A representation that could capture
such a hierarchical structure cleanly can be used to perform efficient inference.
In this section we introduce the Logical Hierarchical HMMs.

Recall that in a LoHMM, there are logical (horizontal) transitions between
user states while in the Logical Hierarchical HMM (LoHiHMM) in addition to
the horizontal transitions, there are vertical (task-subtask) transitions between
parent and child tasks2. It should be mentioned that LoHiHMMs impose the
hierarchical structure on the user’s states and not on the environment state
predicates as we are interested in modeling the user’s activities and not how the
environment evolves.

Instantiation Probability and Global Variables: The distribution that is
used for grounding the state predicates to their ground values is called the Instan-
tiation Distribution and denoted by μ. The constraints in the abstract transition
2 We refer to the states of the LoHiHMM as tasks and subtasks.
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Table 3. The syntax of the selection transition statements. The keywords parent and
child denote the parent and child task respectively. The other parts of the statements
are similar to LoHMM.

parent : A(X,Y ) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if C1
1 (X, Y ) ∧ C1

2(X, Y, Z)... then

{
sp1

1 : child : B(X, Z)

sp1
2 : child : C(Y, Z)

...

else ...

serve as hard constraints for this distribution. In addition, in the hierarchical
setting, the variable instantiation of the parent state should stay the same in
all transitions made by its child states, i.e., the variables of the parent state
should be“global”. Their values cannot change once instantiated until that state
finishes its execution. The global list thus includes variables that are declared
global along with the values of the parent variables.

Selection Probability: The selection probability specifies the probability dis-
tribution over the child tasks given the parent tasks. We call the transition
between a parent task and a child task a selection transition and the syntax is
presented in Table 3.

The syntax is similar to the LoHMM syntax except that we now use special
keywords namely, parent and child to identify the respective tasks. The rule that
is presented in Table 3 is interpreted as: “If the current user task is A(X,Y), then
it chooses one of the possible next child tasks by evaluating the branch predicates
(shown as Cj

i in the rule) and then chooses the child user task (example B or
C) based on the selection distribution”. This rule is similar to the transition rule
in LoHMMs except that in this case, it defines a task-subtask transition of a
HMM. The branch predicates are handled in a manner similar to a decision list
such that the first satisfied branch is always taken. The selection probability is
well defined, i.e., the sum of the probabilities of the different child abstract tasks
for a given branch is 1 (

∑
i spj

i = 1). Note the presence of a default branch that
is chosen if all the other branch conditions fail to evaluate to true.

Transition Probability: The transitions are similar to the LoHMMs with one
difference: the transitions must include the task of the parent. Hence, the hor-
izontal transition is conditioned on the instantiated value of the parent tasks.
The syntax of the horizontal transition is presented in Table 4. The statement
is similar to the ones presented for the LoHMMs except that these statements
include the parent tasks (shown using the keyword pa). These statements can
be interpreted as follows: “If the current parent task is A(X,Y) and the cur-
rent child task is B(X,Z), then it chooses one of the possible logical transitions
by evaluating the branch predicates (shown as Cj

i in the rule) and chooses the
abstract child task based on the transition distribution”. For instance, the next
child could be of the form C(x, y, z, w) with probability p1

1.μ(w), where p1
1 is the

abstract transition probability for C(X, Y, Z, W ) and μ(w) is the instantiation
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Table 4. The syntax of the horizontal transition statements. The keywords pa, ch and
nch denote the parent the current child and the next child abstract tasks respectively.
The other parts of the statements are similar to LoHMM.

pa : A(X, Y ); ch : B(X, Z) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if C1
1(X, Y,Z) ∧ C1

2 (X, Y, Z)... then

{
p1
1 : nch : C(X, Y, Z, W )

p1
2 : nch : D(X, Y, Z, W )

...

else ...

probability for w. Note that the variables in the parent (X, Y ) will be “global”,
since its binding will stay the same until the current parent terminates.

As with the selection transition of LoHiHMM, the set of branch predicates
for a particular parent-child combination transition rule is part of a decision-list
so that the first branch that evaluates to true is taken. The conditions on the
transitions could also serve as hard constraints on the instantiation distributions.
Similar to the LoHMMs, the transition distribution is well defined i.e.,

∑
i pj

i = 1.

Ending Probability: If the LoHiHMM at a lower level terminates at some task,
the control would return to the parent task. For example, it is possible that the
user might take a break from running the experiments and instead work on the
abstract. It is possible that the current task might terminate in more than one
task. Hence there is a necessity to define a distribution over the possible end
tasks at a particular level. We specify the ending probability as a function β
from the set of ground tasks (at any given level) to [0, 1].

Execution semantics: The execution semantics of the LoHiHMM is as follows:
When control reaches the current user state, it chooses a child state to transition
to based on the selection distribution and the instantiation distribution. Once
all the lower level HHMMs terminate, the control reaches back to the current
state and it chooses a horizontal transition as with the case of LoHMMs. The
main intuition is that at each level we have a LoHiHMM and the selection
distribution chooses the LoHiHMM to execute. Each vertical transition (selection
of a child) also has logical conditions that need to be evaluated to choose the
child. LoHiHMMs are to LoHMMs what HHMMs are to HMMs. They can be
viewed as either incorporating hierarchies to LoHMMs or adding logical models
to Hierarchical HMMs. Similar to the LoHMMs, it is possible to state and prove
the existence of a ground Hierarchical HMM for every LoHiHMM.

It must be mentioned that since a HHMM exists for every LoHiHMM and since
a HMM exists for every HHMM, there exists a HMM for every LoHiHMM but
with a prohibitively large state space. LoHiHMM provides 2 further significant
advantages: first, it is easier for the domain expert to elucidate the knowledge as
it is difficult to encode all the relationships and the task hierarchy into the CPTs
of the HMM. Second, learning can be easier since the parameters are shared in
the LoHiHMM.
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4 Inference

In this section we present two methods for inference in these models. The first
is to unroll the LoHiHMM to a ground HMM and use a sparse matrix package.
Our second method avoids explicit unrolling and adapts particle filtering for
the logical setting. Although we present the algorithm for unrolling to a ground
HMM, we do not do that automatically in our experiments and instead use an
equivalent hand-crafted HMM for comparison.

4.1 Particle Filter with Logical Querying

Particle Filter[4] samples the next state based on the evidence and computes the
weight of the samples. The state at time t is denoted by xt and the observation
at time step t is denoted by yt. Samples are drawn according to the optimal
proposal distribution P (xt|xi

t−1, yt) given that i is the current level of the goal
stack where,

P (xt|xi
t−1, yt) =

P (yt|xt)P (xt|xt−1)∑
xt

P (yt|xt)P (xt|xt−1)
(1)

and the weight wt is given by,

wt ∝ P (yt|xi
t−1) =

∑
xt

P (yt|xt)P (xt|xt−1)

The states are then re-sampled based on the weights of the samples. In this
section, we modify the algorithm for the LoHiHMMs. The main bottleneck is
computing the summation over all the next states (xt)3 in the equation 1. In
a logical model, the number of possible ground states can be very large. Thus
it might not even be possible to enumerate all the states for the summation to
be computed. For instance, in a desktop there could be a very large number
of files and emails. It is impractical to enumerate all possible combinations of
files that can be attached to an email. Hence we propose to use a method that
avoids enumeration of the complete state space. In our model, given the value
of the previous sample and the values of the elements in the global list, a query
answering procedure would return the set of possible next states. The intuition
is that the conditions in the abstract transitions would greatly reduce the set of
possible next states.

Given a particular ground state and the values of the global list, the selec-
tion procedure would first determine the set of logical transitions that have the
current user state predicates as the source and obtain the set of the possible
next user state predicates (task-subtask combinations) based on the logical con-
ditions. For each of the next predicates, possible instantiations are considered
using the instantiation distribution. The probability of the next ground state is
the product of the selection probability and the instantiation probability. In some
cases, if we are only interested in the current user state predicate (for instance,
3 In the case of LoHiHMMs, xt corresponds to the user’s goal stack.
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whether the user is composing an email or editing a document), we ignore the
instantiation distribution and sample only from the selection distribution.

For instance, consider the example presented in Figure 1. Let us assume that
the user just completed editing the document say d1. So when the particle filter
queries for possible next states, the condition edited(d1) is satisfied. Since the
email E is in the global list, the selection procedure returns the next state as
replying to email E. This greatly reduces the computation that is otherwise
needed to sum over all the states.

Our inference procedure can be understood as a lazy evaluation procedure
where the HMM is constructed on the fly based on the values that have been
assigned to the variables and the conditions that are satisfied. The main goal of
this procedure is to avoid the explicit construction of a ground HMM. This is
because as we have pointed out earlier, the number of objects in the real-world
is very large which in turn leads to huge transition and observation matrices.
But considering the objects lazily based on the current state and the values of
the variables, we are able to perform effective inference in real time.

4.2 Constructing a Ground HHMM

It is clear that the LoHiHMMs extend the LoHMMs similar to the way in which
Hierarchical HMMs (HHMMs) extend HMMs. Hence it is conceivable that a
LoHiHMM can be unrolled into a ground HHMM. The basic idea of grounding
to a HHMM is as follows: once the current abstract state at level d has been
instantiated with the corresponding values subject to the constraints, it chooses
a child abstract state at level d + 1 based on the logical conditions and the
selection distribution. The child state then chooses its instantiation based on
the instantiation distribution and the global list of variables. It then chooses its
child state at depth d+2 recursively. If the current state at d is a primitive state,
it chooses the next state at the subsequent time-step based on the conditions
and transition distribution. If the child state terminates, the control returns to
the parent state, which makes an abstract transition to the next state at the
same level based on the conditions and the transition distribution.

The key thing to note is that the process is very similar to the execution of
a HHMM. Since at any time a particular condition can only be true for any
particular transition, we obtain a HHMM at the ground level. We now proceed
to define this ground HHMM and the process of unrolling. The states of the
ground HHMM at level d correspond to the possible ground instantiations of
the atoms of all the possible predicates at level d. Let us consider the selection
of a ground child state given the parent state. Assume that the current abstract
state is A(X, Y ) and the selection transition is defined by the rule in Table 3.
Then, for all substitutions of X,Y,Z, i.e, ∀θ = X/x, Y/y, Z/z

If BP1(θ) = True,

{
P(Bθ | Aθ) = sp1

1 · μ(θ)
P(Cθ | Aθ) = sp1

2 · μ(θ)

else...
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Hence the idea is to consider all the substitutions of the current parent states
and evaluate the branch conditions and choose the next child ground state based
on the selection and instantiation distributions. The above step takes place if
the state A(X, Y ) is instantiated at the previous time-step and it has to choose
the ground child state in the current time-step.

If the current state is B(X, Y ) and the child state finishes executing, it will
make an abstract transition to the next state at the same level. For exam-
ple, consider the transition in Table 4 and assume that the current state at
level d is B(x, z) and then child tasks at level d′ > d are completed. B(x, z)
then makes an abstract transition. For all substitutions of X,Y,Z,W i.e,∀θ =
X/x, Y/y, Z/zW/w

If BP1(θ) = True,

{
P(Cθ | Bθ, Aθ) = p1

1 · μ(θ)
P(Dθ | Bθ, Aθ) = p1

2 · μ(θ)

else...

Here the current state considers all the substitutions, evaluates the branch
condition and chooses the next state based on the abstract transition and in-
stantiation distributions. Since it has been shown that a HMM exists for every
HHMM [5], we can use any standard HMM inference with a sparse matrix rep-
resentation for performing inference.

5 Experiments

In this section, we present our experiments with the particle filter and unrolled
(hand-crafted) HMM in 2 simulated domains: a grid world and a cooking domain.

5.1 Doorman Domain

In this domain, the user is in a gridworld where each grid cell has 4 doors that the
user has to open to navigate to the adjacent cell. The LoHiHMM for the figure
is presented in Figure 2.a. The highest level goals of the user are to Gather a
resource or to Attack an enemy. To gather a resource, the user has to collect the
resource and deposit it at the corresponding location. Similarly, to destroy an
enemy, the user has to kill the dragon and destroy the castle. There are different
kinds of resources, namely food and gold. Each resource can be stored only in
a storage of its own type (i.e, food is stored in granary and gold is stored in
bank). These serve as constraints in the LoHiHMM and are shown as conditions
on the arcs in the Figure 2.a. There are 2 locations for each of the resources and
its storage. Similarly there are 2 kinds of enemy red and blue. The user has to
kill the dragon of a particular kind and destroy the castle of the same kind. The
actions that the user can perform are to move in 4 directions, open the 4 doors,
pick up, put down and attack.

The states of the LoHiHMM are the goal-subgoal combinations of the user.
The world state (observable) consists of the current square that the user is
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Fig. 2. (a)LoHiHMM for the gridworld domain. (b)Results. The y-axis presents the
Mean Reciprocal Ratio of the correct user state.

in and the current door that is open. The observations are the user actions.
The observation distribution is generated using a Boltzmann distribution on
the number of actions to the goal. The results are presented in Figure 2.b. The
particle filtering method is compared against the ground HMM on 50 different
runs where the user chooses the top-level goal and starts acting towards achieving
it. The mean reciprocal rank (mean of the inverse of the rank of the current state)
was measured and presented. A MRR of 1 indicates that the correct state has
always been ranked as 1 by the algorithm.

As can be seen, the grounded HMM (being an exact inference) method has a
slightly better performance than the particle filter. More precisely, when a sub-
goal has been achieved (or at the start of the run), particle filter can sample a
few of the incorrect subgoals. Once a few observations are obtained, the particle
filter performs as well as the ground HMM (in fact even better before the first
sub-goal has been achieved). On seeing a few observations, it converges to the
right state as evident from the slight dip in performance. On the other hand,
while the performance of the exact HMM inference is marginally better, it has a
large number of states. In this domain, the HMM had about 144 ground states
and about 2200 observations. Thus the transition matrix is of the size 144× 144
while the observation matrix is of the size 144 × 2200. It took about 3ms on
an average to perform inference using the ground HMM and a sparse matrix
representation while it was nearly 0ms using the filter. In larger domains, such
as a real-time desktop assistant or video survelliance, it is likely that this state
space can grow quickly and it could become infeasible for performing inference.

5.2 Kitchen Domain

The other domain is a kitchen domain where the user has to cook some dishes.
The user has 2 kinds of higher-level goals: one in which he could prepare a recipe
which contains a main dish and a side dish and the second in which he could
use some instant food to prepare a main dish and a side dish. There are 2 kinds
of main dishes and 2 kinds of side dishes that he could prepare from the recipe.
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Fig. 3. (a)The kitchen LoHiHMM. (b)Results of the particle filter and the ground
HMM inference.

Similarly, there are 2 kinds of main dishes and 2 kinds of side dishes that he
could prepare from instant food. The LoHiHMM is presented in Figure 3.a.

There are 2 shelves with 3 ingredients each. The shelves have doors that
must be opened before fetching ingredients and only one door can be open at a
time. The observable part of the state consists of the contents of the bowl, the
ingredient on the table, the mixing state and temperature state of the ingredient
(if it is in the bowl) and the door that is open. The user’s actions are: open the
doors, fetch the ingredients, pour them into the bowl, mix, heat and bake the
contents of the bowl, or replace an ingredient back to the shelf.

As with the previous domain, we present the Mean Reciprocal Ratio of the
correct state when using the particle filter and the exact inference using ground
HMM in this domain. The 2 algorithms were executed for 50 runs where the
user chooses the high-level goal randomly. In this domain, the performance of
the particle filter is better than the grid world domain. As can be observed,
the particle filter samples more correct states in the beginning and hence has
a better performance compared to the exact inference method. But like the
previous domain, once a sub-goal has been achieved, the filter samples some of
the incorrect states thus having a small dip in the MRR but then recovers by
using the observations to converge quickly on the true state. The ground HMM
had a larger number of states(64) and observations (> 700) respectively leading
to large transition and observation matrices and took about 2.5ms per inference
query when compared to nearly 0ms for the particle filter.

6 Conclusion and Future Work

In this work, we motivated the need for the combination of the logical and hier-
archical versions of HMMs for performing activity recognition. To this effect, we
have developed and presented Logical Hierarchical HMMs. We outlined the syn-
tax and semantics of the conditional branching for the vertical and the horizontal
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transitions that depend on certain attributes of the environment. We also out-
lined a particle filter algorithm to perform efficient inference on these models
and presented a procedure for unrolling the LoHiHMMs to HMMs. We then
evaluated our algorithms on 2 simulated domains and showed that the particle
filter can perform efficiently while sacrificing a small amount of accuracy.

Zettlemoyer et al. [13] consider the problem of filtering in relational HMMs and
propose the idea of logical particle filter for this case. In their model, the states
are conjunctions of propositions and/or functions. The observations and the
actions are propositions (i.e., unparameterized). The basic idea is to construct
a set of partitions (hypotheses) where each of the partitions represents a set of
states such that every state in a hypothesis has the same transition probability.
The hypotheses at the current time step are split into a set of mutually exclusive
ones, the transition probability is then applied and the observations are used to
specialize the hypothesis. The expectation over the states in a hypothesis is
computed analytically while the hypotheses themselves are sampled. The main
bottleneck lies in the construction of these hypothesis. It is not clear how to
construct these mutually exclusive hypothesis in the presence of function symbols
for the state space. We sacrifice expressiveness for efficiency in our work and
consider only predicate symbols for the state space, hence making the particle
filter simpler. Natarajan et.al [12] propose the use of relational hierarchies for
specifying prior knowledge to an assistant. We consider a representation that is
not specific to the assistant setting but propose a general method for extending
the HMMs in the relational and hierarchical settings.

One of the important directions for future research is to improve the accuracy
of the particle filter. One possible solution that we are currently exploring is the
use of Rao-Blackwellization (similar to that of Zettlemoyer et al. but in a simpler
setting using predicates for the states) to analytically marginalize out part of the
state space and then sample the rest. It is possible to sample the predicates at the
next time-step while inferring the values of the variables exactly. This would lead
to improved inference while not increasing the size of the state space drastically.
Recently Milch and Russell [9] presented an Metropolis-Hastings based MCMC
algorithm for relational structures. The algorithm considers states as partial
description of the world and uses context specific independences among the state
variables to factor out the acceptance probabilities. It remains an interesting
future work to explore the use of MCMC for the inference in LoHiHMMs. Such a
direction would provide more insights into the relative merits of particle filtering
and MCMC in relational domains. We are currently working on automating the
grounding of the LoHiHMMs to a ground HMM.

Yet another important direction is to evaluate on real-world domains. Cur-
rently the logical version of the model (LoHMM) is being deployed and evaluated
on a real-world assistant (name withheld for blind review) for activity recogni-
tion and initial results are promising. Our future goal is to use the LoHiHMMs
for the same purpose. In many real-world domains, the variables can possibly
take infinite values (such as filenames of the documents). There is a need for
the logical representations to handle these infinite variables. We are exploring
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methods that can make our particle filter to handle these infinite variables in
a principled way. The principle advantage of Logical models lie in the fact that
they can exploit parameter tying while learning and our future goal is to design
efficient learning algorithms for LoHiHMMs.
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Abstract. We tackle the problem of statistical learning in the stan-
dard knowledge base representations for the Semantic Web which are
ultimately expressed in description Logics. Specifically, in our method
a kernel functions for the ALCN logic integrates with a support vector
machine which enables the usage of statistical learning with reference
representations. Experiments where performed in which kernel classifi-
cation is applied to the tasks of resource retrieval and query answering
on OWL ontologies.

1 Learning from Ontologies

The Semantic Web (SW) represents an emerging applicative domain where
knowledge intensive automated manipulations on complex relational descriptions
are foreseen. Although machine learning techniques may have a great potential
in this field, so far research has focused mainly on methods for knowledge acqui-
sition from text (ontology learning) [4]. Yet machine learning methods can be
transposed from ILP to be applied to ontologies described with formal concept
representations employed to model knowledge bases in the SW.

Description Logics (DLs) [1] is a family of languages that has been adopted
as the core technology for representing ontologies. Such languages are endowed
with an open-world semantics which makes them particularly fit for the SW
applications where, differently from classical DB contexts, knowledge bases are
considered inherently incomplete, since new resources may continuously made
available across the Web. Thus, few methods have been proposed for learning
these representations (e.g. see [5, 13, 8, 14]).

While classic ILP techniques have been adapted to work with DLs repre-
sentations, purely logic approaches often fall short in terms of efficiency and
noise-tolerance. Learning with logic-based methods is inherently intractable in
multi-relational settings. Moreover, for the sake of tractability, only very simple
DL languages have been considered so far [6]. Recently, it has been shown that
kernel methods may be effectively applied to structured representations [10] and
also to ontology languages [9, 2].

In this work, a family of kernel functions is defined for DLs representations.
Specifically, the ALCN logic [1] is adopted as a tradeoff between efficiency and
expressiveness. The kernel functions are defined encoding a notion of similarity
between objects expressed in this representation, which is based on structural
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and semantic aspects of the reference language, namely a normal form for the
concept descriptions and the extension of concepts approximated through the
objects that are (directly or provably) known to belong to them.

By coupling the kernel functions with support vector machines (SVMs) many
tasks can be tackled. Particularly, we demonstrate how to perform important
inference services based on inductive classification, namely concept retrieval and
approximate query answering [1], that may turn out to be hard for logic meth-
ods, especially with knowledge bases built from heterogeneous sources. These
tasks are generally grounded on merely deductive procedures which easily fail in
case of (partially) inconsistent or incomplete knowledge. We show how inductive
methods perform comparably well w.r.t. a standard deductive reasoner, allow-
ing the suggestion of new knowledge that is not logically derivable similarly to
abductive conclusions.

An experimentation on both artificial and real ontologies available in standard
repositories proves the effectiveness of inductive classification using the kernel
function integrated with a SVM.

The paper is organized as follows. After recalling the basics of the DLs repre-
sentation (Sect. 2), we introduce relational kernels for the ALCN logic in Sect. 3.
The application of kernel-based classification for inductive resource retrieval is
presented in Sect. 4 and an experimental evaluation of the method is reported
in Sect. 5. Finally, Sect. 6 concludes and outlines further applications and ex-
tensions of this work.

2 Reference Representation

The basics of the ALCN logic will be recalled (see [1] for a thorough reference).
Such a logic is endowed with the basic constructors employed by the standard
ontology languages adopted in the SW (such as OWL).

2.1 Knowledge Bases in Description Logics

Concept descriptions are inductively defined starting with a set NC = {C, D, . . .}
of primitive concept names, a set NR = {R, Q, . . .} of primitive roles and a set of
names for the individuals (objects, resources) NI = {a, b, . . .}. Complex descrip-
tions are built using primitive concepts and roles and the language constructors.
The set-theoretic semantics of these descriptions is defined by an interpretation
I = (ΔI , ·I), where ΔI is a non-empty set, the domain of the interpretation,
and ·I is the interpretation function that maps each A ∈ NC to a set AI ⊆ ΔI

and each R ∈ NR to RI ⊆ ΔI ×ΔI .
Complex descriptions can be built in ALCN using the language constructors

listed in Table 1, along with their semantics derived from the interpretation of
atomic concepts and roles [1].Note that theopen-worldassumption (OWA) ismade.

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is the
set of definitions1 C ≡ D, meaning CI = DI , where C is the concept name
1 More general definitions of concepts by means of inclusion axioms (C � D) may also

be considered.
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Table 1. Syntax and semantics of concepts in the ALCN logic

Name Syntax Semantics
top � ΔI

bottom ⊥ ∅
full negation ¬C ΔI \ CI

c. conjunction C1 � C2 CI
1 ∩ CI

2

c. disjunction C1 � C2 CI
1 ∪ CI

2

existential r. ∃R.C {x ∈ ΔI | ∃y ∈ ΔI((x, y) ∈ RI ∧ y ∈ CI)}
universal r. ∀R.C {x ∈ ΔI | ∀y ∈ ΔI((x, y) ∈ RI → y ∈ CI)}
at least r. ≥ nR {x ∈ ΔI | |{y ∈ ΔI : (x, y) ∈ RI |} ≥ n}
at most r. ≤ nR {x ∈ ΔI | |{y ∈ ΔI : (x, y) ∈ RI |} ≤ n}

and D is its description. A contains assertions on the world state concerning the
individuals, e.g. C(a) and R(a, b), meaning that aI ∈ CI and (aI , bI) ∈ RI .

Example 2.1 (Royal Family). This example shows a knowledge base modeling
concepts and roles related to the British royal family2:

T = { Male ≡ ¬Female,
Woman ≡ Human � Female,
Man ≡ Human � Male,
Mother ≡ Woman � ∃hasChild.¬Human,
Father ≡ Man � ∃hasChild.¬Human,
Parent ≡ Father � Mother,
Grandmother ≡ Woman � ∃hasChild.¬Parent,
Mother-w/o-daughter ≡ Mother � ∀hasChild.¬Female,
Super-mother ≡ Mother � ≥ 3.hasChild }

A = { Woman(elisabeth), Woman(diana), Man(charles), Man(edward),
Man(andrew), Mother-w/o-daughter(diana),
hasChild(elisabeth, charles), hasChild(elisabeth,edward),
hasChild(elisabeth, andrew), hasChild(diana, william),
hasChild(charles, william) }

2.2 Inference Services

Many inference services are supported by a growing number of DL resoners. The
principal inference service amounts to assessing whether a concept subsumes
another concept according to their semantics:

Definition 2.1 (subsumption). Given two descriptions C and D, C sub-
sumes D, denoted by C � D, iff for every interpretation I it holds that CI ⊇ DI.
When C � D and D � C then they are equivalent, denoted with C ≡ D.

2 From Franconi’s DLs course: http://www.inf.unibz.it/∼franconi/dl/course

http://www.inf.unibz.it/~franconi/dl/course
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Normally subsumption is computed w.r.t. the interpretations satisfying the
knowledge base. More expressive languages allo for the construction or role-
hierarchies based on subsumption.

Another important inference, since we aim at inductive methods that manip-
ulate single resources, is instance checking, that amounts to deciding whether
an individual belongs to the extension of a given concept [1]. Another related
inference is retrieval which consists in finding the extension of a given concept:

Definition 2.2 (retrieval). Given an knowledge base K and a concept C, find
all individuals a such that K |= C(a).

Conversely, it may be necessary to find the concepts which an individual belongs
to (realization problem), especially the most specific one:

Definition 2.3 (most specific concept). Given an ABox A and an individual
a, the most specific concept of a w.r.t. A is the concept C, denoted MSCA(a),
such that A |= C(a) and for any other concept D such that A |= D(a), it holds
that C � D.

For some languages, the MSC may not be expressed by a finite description [1], yet
it may be approximated by a more general concept. Generally approximations up
to a certain depth k of nested levels are considered, denoted MSCk. A maximal
depth approximation will be generically indicated with MSC∗.

2.3 Normal Form

Many semantically equivalent (yet syntactically different) descriptions can be
given for the same concept. Equivalent concepts can be reduced to a normal
form by means of rewriting rules that preserve their equivalence [1]. We will
adopt a normal form derived from [3].

Some notation is necessary for naming the various parts of a description:

– prim(C) is the set of all the primitive concepts (or their negations) at the
top-level of C;

– valR(C) = C1 � · · · �Cn if there exists a value restriction ∀R.(C1 � · · · �Cn)
at the top-level of C, otherwise valR(C) = �;

– exR(C) is the set of the descriptions C′ appearing in existential restrictions
∃R.C′ at the top-level conjunction of C.

– minR(C) = max{n ∈ IN | C � (≥ n.R)} (always a finite number);
– maxR(C) = min{n ∈ IN | C � (≤ n.R)} (if unlimited then maxR(C) =∞).

A normal form may be recursively defined as follows:

Definition 2.4 (ALCN normal form). A concept description C is in ALCN
normal form iff C = ⊥ or C = � or if C = C1 � · · · � Cn with

Ci =
�

P∈prim(Ci)

P �
�

R∈NR

⎡
⎣∀R.valR(Ci) �

�

E∈exR(Ci)

∃R.E � ≥mR
i .R � ≤MR

i .R

⎤
⎦
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where, for all i = 1, . . . , n, mR
i =minR(Ci), MR

i = maxR(Ci), Ci �≡ ⊥ and, for
all R ∈ NR, valR(Ci) and every sub-description in exR(Ci) are, in their turn, in
ALCN normal form.

This normal form can be obtained by means of a repeated application of equiv-
alence preserving operations, namely replacing defined concepts with their def-
inition as in the TBox and pushing the negation in the nested level (negation
normal form).

Example 2.2 (normal form). The concept description
C ≡ (¬A1 �A2) � (∃R1.B1 � ∀R2.(∃R3.(¬A3 �B2)))
is in normal form, whereas the following is not:
D ≡ A1 �B2 � ¬(A3 � ∃R3.B2) � ∀R2.B3 � ∀R2.(A1 �B3)
where Ai’s and Bj ’s are primitive concept names and the Rk’s are role names.

3 Defining Kernels for ALCN
A family of valid kernels for the space X of ALCN descriptions can be proposed,
based on the family defined for ALC [9]. The definition is based on the AND-
OR tree structure of the descriptions in normal form, like for the standard tree
kernels [10] where similarity between trees depends on the number of similar
subtrees (or paths unraveled from such trees). Yet this would end in a merely
syntactic measure which does not fully capture the semantic nature of expressive
DLs languages such as ALCN .

Normal form descriptions can be decomposed level-wise into sub-descriptions.
There are three possibilities for each level: the upper level is dominated by the
disjunction of concepts that, in turn, are made up of a conjunction of com-
plex or primitive concepts. In the following the definition of the ALCN kernels
(parametrized on the decaying factor λ) is reported.

Definition 3.1 (ALCN kernels). Given an interpretation I of K, the ALCN
kernel based on I is the function kI : X ×X �→ R structurally defined as follows:
given two disjunctive descriptions D1 =

⊔n
i=1 C1

i and D2 =
⊔m

j=1 C2
j in ALCN

normal form:
disjunctive descriptions:

kI(D1, D2) = λ

n∑
i=1

m∑
j=1

kI(C1
i , C2

j )

with λ ∈]0, 1]
conjunctive descriptions:

kI(C1, C2) =
∏

P1 ∈ prim(C1)
P2 ∈ prim(C2)

kI(P1, P2) ·
∏

R∈NR

kI((mR
C1 , MR

C1), (mR
C2 , MR

C2)) ·

∏
R∈NR

kI(valR(C1), valR(C2)) ·
∏

R∈NR

∑
C1

i ∈ exR(C1)
C2

j ∈ exR(C2)

kI(C1
i , C2

j )
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where mR
Ci = minR(Ci) and MR

Ci = maxR(Ci), i = 1, 2.

numeric restrictions:

kI((mC , MC), (mD, MD)) =
min(MC , MD)−max(mC , mD) + 1
max(MC , MD)−min(mC , mD) + 1

if min(MC , MD) > max(mC , mD) and kI((mC , MC), (mD, MD)) = 0 otherwise.

primitive concepts:

kI(P1, P2) = kset(P I
1 , P I

2 ) = |P I
1 ∩ P I

2 |

where kset is the kernel for set structures defined in [10]. This case includes also
the negation of primitive concepts using: (¬P )I = ΔI \ P I

This kernel computes the similarity between disjunctive as the sum of the cross-
similarities between any couple of disjuncts from either description. The rationale
for this kernel is that similarity between disjunctive descriptions is treated by
taking the sum of the cross-similarities between any couple of disjuncts from
either description. The term λ is employed to downweight the similarity of the
sub-descriptions on the grounds of the level where they occur.

Following the normal form, the conjunctive kernel computes the similarity
between two input descriptions distinguishing for factors corresponding to prim-
itive concepts, universal, existential and numeric restrictions, respectively. These
values are multiplied reflecting the fact that all the restrictions have to be sat-
isfied at a conjunctive level. Not that the values computed for value and exis-
tential restrictions involve recursive calls to the kernel functions on less complex
structures.

The similarity of the numeric restrictions is simply computed as a measure of
the overlap between the two intervals. Namely it is the ratio of the amounts of
individuals in the overlapping interval and those the larger one, whose extremes
are minimum and maximum. Note that some intervals may be unlimited above:
max =∞. In this case we may approximate with an upper limit N greater than
|ΔI |+ 1.

Finally, the similarity between primitive concepts is measured in terms of
the intersection of their extension. Making the unique names assumption on the
names of the individual occurring in the ABox A, one can consider the canonical
interpretation [1] I, using Ind(A) as its domain (ΔI := Ind(A)). Therefore, the
kernel can be specialized as follows: since the kernel for primitive concepts is
essentially a set kernel we can set the constant λp to 1/ΔI so that the cardinality
of he intersection is weighted by the number of individuals occurring in the
overall ABox. Alternatively, another choice could be λP = 1/|P I

1 ∪ P I
2 | which

would weight the rate of similarity (the extension intersection) measured by
the kernel with the size of the concepts measured in terms of the individuals
belonging to their extensions.
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Being partially based on the concept structure and only ultimately on the
extensions of the concepts at the leaves, it may be objected that this kernel
function can roughly grasp the concept similarity based on their semantics. This
may be well revealed by the case of input concepts that are semantically almost
equivalent yet structurally different. However, it must be pointed out that the
process of rewriting for putting the concepts in normal form tends to eliminate
these differences. More importantly, the ultimate goal for defining a kernel will
be comparing individuals rather than concepts. This will be performed recurring
to the most specific concepts of the individuals w.r.t. the same ABox. Hence, it
was observed that semantically similar individuals will tend to share the same
structures as elicited from the same source.

3.1 Discussion

The validity of a kernel depends on the fact that the function is positive definite.
Positive definiteness can be also proved exploiting some closure properties of the
class of positive definite kernel functions [11]. Namely, multiplying a kernel by
a constant, adding or multiplying two kernels yields another valid kernel. We
can demonstrate that the function introduced above is indeed a valid kernel for
our space of hypotheses. Observe that the core function is the one on primitive
concept extensions. It is essentially a set kernel [10]. The versions for top-level
conjunctive and disjunctive descriptions are also positive definite being essen-
tially based on the primitive kernel. Descending through the levels there is an
interleaving of the employment of these function up the the basic case of the
function for primitive descriptions.

Exploiting these closure properties it could be pr oven3 that:

Proposition 3.1. Given an interpretation I, the function kI is a valid kernel
for the space X of ALCN descriptions in normal form.

As regards efficiency, it is possible to show that the kernel function can be com-
puted in time O(|N1||N2|) where |Ni|, i = 1, 2, is the number of nodes of the
concept AND-OR trees. It can computed by means of dynamic programming.
Knowledge Base Management Systems, especially those dedicated to storing in-
stances, generally maintain information regarding concepts and instances which
may further speed-up the computation.

The kernel can be extended to the case of individuals a, b ∈ Ind(A) simply by
taking into account the approximations of their MSCs:

kI(a, b) = kI(MSC∗(a), MSC∗(b))

In this way, we move from a graph representation like the ABox portion
containing an individual to an intensional tree-structured representation.

Observe that the kernel function could be specialized to take into account the
similarity between different relationships. This would amount to considering each

3 Proof omitted for brevity.
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couple of existential and value restriction with one element from each descrip-
tion (or equivalently from each related AND-OR tree) and the computing the
convolution of the sub-descriptions in the restriction. As previous suggested for
λ, this should be weighted by a measure of similarity between the roles measured
on the grounds of the available semantics. We propose therefore the following
weight: given two roles R, S ∈ NR: λRS = |RI ∩ SI |/|ΔI ×ΔI |.

As suggested before, the intersection could be measured on the grounds of
the relative role extensions with respect to the whole domain of individuals, as
follows: λRS = |RI ∩ SI |/|RI ∪ SI |. It is also worthwhile to recall that some DLs
knowledge bases support also the so called R-box [1] with assertions concerning
the roles, thus we might know beforehand that for instance R � S and compute
heir similarity consequently.

The extension of the kernel function to more expressive DL is not trivial. DLs
allowing normal form concept definitions can only be considered. Moreover, for
each constructor not included in the ALCN logic, a kernel definition has to be
provided.

Related distance measures can also be derived from kernel functions which
essentially encode a notion of similarity between concepts and between individ-
uals. This can enable the definition of various distance-based methods for these
complex representations spanning from clustering to instance-based methods.

4 Inductive Classification and Retrieval

In this paper, a kernel method is used to solve the following classification
problem:

Definition 4.1 (classification problem). Given a knowledge base K=(T ,A),
the set of individuals Ind and a set of concepts DC = {C1, . . . , Cs} defined on
the grounds of those in K, the primal problem to solve is: considered an indi-
vidual a ∈ Ind determine the subset of concepts {C1, . . . , Ct} ⊆ DC to which a
belongs to.

This classification problem can be also be regarded as a retrieval problem with
the following dual definition:

Definition 4.2 (retrieval problem). Given a knowledge base K = (T ,A), a
query concept Q defined on the grounds of those in K and the set of individuals
in the ABox Ind(A), the dual problem to solve is: find all b ∈ Ind(A) such that
K |= Q(b).

In the general learning setting, the target classes are disjoint. This is not gen-
erally verified in the SW context, where an individual can be instance of more
than one concept in the hierarchy. To solve this problem, a new answering proce-
dure is proposed. It is based on the decomposition of the multi-class problem into
smaller binary classification problems (one per class). Therefore, a simple binary
value set (V = {−1, +1}) can be employed, where (+1) indicates that an exam-
ple xi occurs in the ABox w.r.t. the considered concept Cj (namely Cj(xi) ∈ A);
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(−1) indicates the absence of the assertion in the ABox. As an alternative, it
can be considered +1 when Cj(xi) can be inferred from the knowledge base,
and −1 otherwise.

Another issue has to be considered. In the general classification setting an im-
plicit assumption of Closed World is made. On the contrary, in the SW context
the Open World Assumption is generally made. To deal with the OWA, the ab-
sence of information on whether a certain instance xi belongs to the extension of
concept Cj should not be interpreted negatively, as seen before, rather, it should
count as neutral information. Thus, another value set has to be considered,
namely V = {+1,−1, 0}, where the three values denote, respectively, assertion
occurrence (Cj(xi) ∈ A), occurrence of the opposite assertion (¬Cj(x) ∈ A) and
assertion absence in A.

Occurrences can be easily computed with a lookup in the ABox. Moreover, as
in the previous case, a more complex procedure may be devised by substituting
the notion of occurrence (absence) of assertions in (from) the ABox with the one
of derivability from the whole KB, i.e. K ! Cj(xi), K �! Cj(xi), K �! Cj(xi) and
K �! ¬Cj(xi), respectively.

Although this may improve the precision of inductive reasoning, it is also
more computationally expensive, since the simple lookup in the ABox must be
replaced with instance checking. Hence, considered the query instance xq, for
every concept Cj ∈ C the classifier will return +1 if xq is an instance of Cj , −1
if xq is an instance of ¬Cj , and 0 otherwise. The classification is performed on
the ground of a set of training examples from which such information can be
derived.

These results can be used to improve concept retrieval service. By classifying
the individuals in the Abox w.r.t. all concepts, concept retrieval is performed
exploiting an inductive approach. As will be experimentally shown in the fol-
lowing, the classifier, besides of having a comparable behavior w.r.t. a standard
reasoner, is also able to induce new knowledge that is not logically derivable.
Moreover it can be employed for the query answering task by determining, as
illustrated above, the extension of a new query concept built from concepts and
roles in the considered ontology.

Note that instance-checking, as performed by a reasoner is P-SPACE com-
plete for the reference DL language [1]. Conversely, the inductive classification
procedure is very efficient once the SVM has been trained. Most of the training
time is actually devoted to the construction of the kernel matrix which gains a
lot of speed-up exploiting statistics on concept extensions normally maintained
by knowledge base management systems [12]. Moreover ad hoc data structures
can be employed to make this process even more efficient.

5 Experimental Evaluation

The ALCN kernel function has implemented in Java and integrated with a
support vector machine from the LIBSVM library4.
4 http://www.csie.ntu.edu.tw/∼cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 2. Ontologies employed in the experiments

Ontology DL lang. #concepts #object prop. #datatype prop.
People ALCHIN (D) 60 14 1

University ALC 13 4 0

FSM SOF(D) 20 10 7

Family ALCF 14 5 0

Newspaper ALCF(D) 29 28 25

Wines ALCIO(D) 112 9 10

Science ALCIF(D) 74 70 40

S.-W.-M. ALCOF(D) 19 9 1

NTN SHIF(D) 47 27 8

In order to assess the value of the kernel integrated in a SVM at solving the
retrieval problem, experiments have been carried out on a number of simple and
more complex ontologies.

It is difficult to find in the literature similar methods for a comparison of
the outcomes. A recent approach using simple kernels with SVMlight has been
qualitatively evaluated [2]; unfortunately the data (drawn from two ontologies)
are not publicly available. Namely the authors artificially populated a knowledge
base and then assess the quality of the induced models for a selected number of
concepts.

We preferred to carry out more extensive experiments on available knowl-
edge bases with no random population involving all concepts and individuals
of the ontology. As such experiments are more easily repeatable. The details of
experimental settings and the outcomes are reported in the following.

5.1 Experimental Setup

The experiments have been performed on nine different ontologies (w.r.t. the
domain and size) represented in OWL.

Namely, the family and university ontologies were developed in our lab5

and populated with real data; the FSM, Surface-Water-Model, NewTes-

tamentNames, Science, People, Newspaper and Wines ontologies were
selected from the Protégé library6. Details about such ontologies are reported in
Table 2. The number of individuals spans from 50 to 1000. However ontologies
are normally measured in terms of triples; in the experiment we have ontologies
whose size goes from hundreds up to ten thousands of triples.

These ontologies are represented in languages that are generally more complex
than ALCN . Hence, in order to apply the kernel function, constructs that are
not allowed by ALCN were discarded during the computation of the MSCs of
the individuals.

5 http://lacam.di.uniba.it:8000/∼nico/research/ontologymining.html
6 http://protege.stanford.edu

http://lacam.di.uniba.it:8000/~nico/research/ontologymining.html
http://protege.stanford.edu
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The inductive classification method was applied to each ontology; namely,
the individuals were checked to assess if they were instances of the concepts
in the ontology using the classifier induced by the SVM adopting the ALCN
kernel function (initially λ was set to 1). The performance of the classifier was
evaluated comparing its responses to those returned by a standard reasoner7

used as baseline.
Specifically, for each individual in the ontology the MSC was computed and

enlisted in the set of training or test examples (individuals). For each concept, a
model was built training the SVM with the kernel on the proper set of examples.
Each test example was then classified applying the induced classifier. The exper-
iment has been repeated for each concept adopting a ten-fold cross-validation
procedure. Actually there were two sessions: in the first we tested the system on
primitive and defined concepts in the ontology while in the second more com-
plex random concepts were randomly built on the grounds of these concepts for
testing the system.

For the evaluation, initially the standard measures of precision, recall, F-
measure were considered. Yet in a setting complying with an open-world seman-
tics cases when the resulting answer was unknown had to be considered more
carefully, since they still might possibly imply a classification of an instance as
relevant. Then we decided to measure a sort of alignment between the response
given by the deductive reasoner and the one returned by our inductive classifier.

The running time (on a Core2Duo 2Ghz Linux box with 2GB RAM) goes
from minutes to 1.2 hours for a run of 10-fold cross-validation procedure on the
individuals belonging to a single ontology w.r.t. each test concept. That includes
the time elapsed for getting the correct classification from the reasoner for the
comparison.

Hence, for each concept in the ontology, the following parameters have been
measured for the evaluation [7]:

– match rate: cases of individuals that got the same classification by both
classifiers;

– induction rate: individuals that the classifier found to belong to the target
concept or its negation, while this was not logically deducible;

– omission error rate: cases of individuals for which the inductive classifier
omitted to determine whether they were instances (or not) of the target
concept while this could be logically ascertained by the reasoner;

– commission error rate: amount of individuals labeled as instances of a given
concept, while they (logically) do not belong to that concept or vice-versa.

Further experimental sessions, reported in the following section, were per-
formed by varying the parameter λ. Besides, another experiment has regarded
testing the performance of the classifier on random query concepts generated by
composition of (primitive and defined) concepts in the knowledge base.

7
Pellet ver. 1.5.1: http://pellet.owldl.com

http://pellet.owldl.com
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Table 3. Outcomes of the concept classification experiments (λ = 1): average percent-
ages and standard deviations

Ontology match rate induction rate om. error rate com. error rate
People 86.61 (± 10.37) 5.40 (± 12.44) 7.99 (± 6.44) 0.0 (± 0.0)

University 78.94 (± 9.78) 11.40 (± 8.65) 1.76 (± 6.09) 7.90 (± 7.26)

FSM 91.72 (± 9.32) 0.72 (± 2.79) 0.0 (± 0.0) 7.56 (± 9.53)

Family 61.95 (± 20.36) 3.15 (± 11.37) 34.89 (± 22.88) 0.0 (± 0.0)

NewsPaper 90.33 (± 8.29) 0.0 (± 0.0) 9.67 (± 8.29) 0.0 (± 0.0)

Wines 95.58 (± 7.85) 0.43 (± 3.44) 3.99 (± 7.30) 0.0 (± 0.0)

Science 94.20 (± 7.91) 0.72 (± 1.61) 5.08 (± 8.31) 0.0 (± 0.0)

S.-W.-M. 87.09 (± 15.83) 6.73 (± 15.96) 6.18 (± 9.14) 0.0 (± 0.0)

N.T.N. 92.52 (± 24.71) 2.58 (± 8.44) 0.15 (± 3.90) 4.75 (± 11.28)

5.2 Outcomes

Classification with Concepts in the Knowledge Base. Table 3 reports
the outcomes of this first experiment. The average rates obtained over all the
concepts in each ontology are reported, jointly with their range.

It is important to note that, for every ontology, the commission error was quite
low. This means that the classifier did not make critical mistakes, i.e. cases when
an individual is deemed as an instance of a concept while it really is an instance
of another disjoint concept. Particularly, the commission error rate is not null in
case of University and FSM ontologies and consequently also the match rate
is the lowest. It is worthwhile to note that these ontologies have also a limited
number of individuals. Specifically, the number of concepts is almost similar to
the number of individuals, which represents a difficult situation in which there
is not enough information for separating the feature space and then produce
correct classifications. However, also in these conditions, the commission error
was quite low, the matching rate is considerably high and the classifier was even
able to induce new knowledge.

Interestingly, it was noticed that the match rate increased with the increase of
the number of individuals in the considered ontology with a consequent strong
decrease of the commission error rate that tends to 0 in for the most populated
ontologies. For almost all ontologies the SVM classifier is also able to induce
new knowledge, i.e. to assign an individual to a concept when this could not be
decided by the deductive reasoner due to the open-world semantics.

For some ontologies some rates exhibit high standard deviations. In a careful
insight of such cases, we found that this was due to cases of concepts with very
few positive (negative) examples. This problem is made harder by the particu-
lar DL setting that allows many individuals to have an unknown classification
w.r.t. some concepts because of the OWA. This is particularly true for the ontolo-
gies Family and University that were intentionally built as sparse knowledge
bases (lots of class-membership assertions for the various individuals cannot be
logically derived from the knowledge base).
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Table 4. Outcomes of the concept classification experiments (λ = .5): average per-
centages and standard deviations

Ontology match rate induction rate om. error rate com. error rate
People 86.61 (± 10.37) 5.4 (± 12.44) 7.99 (± 6.44) 0.0 (± 0.0)

University 71.06 (± 13.36) 11.40 (± 8.65) 4.38 (± 15.18) 13.16 (± 8.56)

FSM 91.72 (± 9.32) 0.72 (± 2.79) 0.0 (± 0.0) 7.56 (± 9.53)

Family 61.55 (± 20.47) 3.55 (± 12.81) 34.89 (± 22.88) 0.0 (± 0.0)

Newspaper 90.38 (± 8.15) 0.0 (± 0.0) 9.62 (± 8.15) 0.0 (± 0.0)

Wines 95.15 (± 8.81) 0.65 (± 5.19) 4.21 (± 7.50) 0.0 (± 0.0)

Science 87.68 (± 12.71) 6.52 (± 12.61) 5.80 (± 9.85) 0.0 (± 0.0)

S.-W.-M. 86.18 (± 17.86) 8.01 (± 16.36) 5.81 (± 7.74) 0.0 (± 0.0)

NTN 90.52 (± 25.10) 4.27 (± 10.03) 4.90 (± 11.73) 0.31 (± 5.22)

Besides a stable behavior was also observed as regards the omission error rate
which is very often non-null, yet very limited. This is due to a high number of
training examples classified as unknown w.r.t. a certain class. To decrease the
tendency to a conservative behavior of the classifier, a threshold could be intro-
duced for the consideration of the training examples labeled with 0 (”unknown”
classification).

The experiment has been repeated by setting the parameter λ of the kernel
function to smaller values. For example, the average results when λ = 0.5 are
reported in Table 4 (we omit the other results for sake of brevity). From this
table, where the average rates w.r.t. the various ontologies are reported, we can
note that the classification results are comparable with those of the previous
experiment. Again it is possible to note that halving of the λ value does not
generally influence the classification results.

Particularly, for ontologies with the lowest numbers of individuals (e.g. Uni-

versity, FSM) the match rate sometimes also decreases w.r.t. the classification
performed using λ = 1.

Random Query Concepts. Another experiment has been carried out, to test
the kernel classifier as a means for performing inductive concept retrieval w.r.t.
new query concepts built from the considered ontology. The method has been
applied to solve a number of retrieval problems using λ = 1 for the kernel
function. To this purpose, 15 queries were randomly generated by means of
conjunctions / disjunctions of (3 thru 8) primitive and/or defined concepts of
each ontology.

As for the previous experiment, a ten fold cross-validation setting was applied
with the same nine ontologies. The individuals have been assigned to each of the
three classes and the classifier induced by the SVM has been used to decide on the
membership to the query class of the test individuals. The outcomes are reported
in Table 5, from which it is possible to observe that the behavior of the classifier
generally remains unvaried w.r.t. the previous experiment whose outcomes are
reported in Table 3. As in the other experiments, they were repeated for different
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Table 5. Outcomes of the experiments with random query concepts (λ = 1): average
percentages and standard deviations

Ontology match rate induction rate om. error rate com. error rate
People 88.56 (± 9.30) 4.05 (± 10.50) 7.4 (± 6.26) 0.0 (± 0.0)

University 71.99 (± 12.15) 15.98 (± 8.18) 0.94 (± 4.97) 11.10 (± 11.22)

FSM 87.80 (± 10.83) 0.86 (± 2.39) 0.0 (± 0.0) 11.34 (± 10.80)

Family 66.33 (± 16.79) 4.53 (± 10.93) 29.14 (± 20.87) 0.0 (± 0.0)

Newspaper 77.91 (± 10.06) 0.0 (± 0.0) 22.09 (± 10.06) 0.0 (± 0.0)

Wines 94.33 (± 9.12) 0.0 (± 0.0) 5.67 (± 9.12) 0.0 (± 0.0)

Science 97.86 (± 1.61) 0.51 (± 1.36) 1.63 (± 1.64) 0.0 (± 0.0)

S.-W.-M. 80.39 (± 16.26) 13.40 (± 18.93) 6.21 (± 7.28) 0.0 (± 0.0)

NTN 90.58 (± 25.23) 2.18 (± 11.0) 7.19 (± 14.36) 0.40 (± 7.39)

Table 6. Outcomes of the experiments with random query concepts (λ = .5): average
percentages and standard deviations

Ontology match rate induction rate om. error rate com. error rate

People 86.71 (± 8.97) 3.97 (± 10.75) 9.33 (± 6.49) 0.0 (± 0.0)

University 63.95 (± 18.56) 17.16 (± 10.08) 2.14 (± 11.14) 16.76 (± 13.06)

FSM 84.25 (± 12.40) 0.90 (± 3.05) 0.0 (± 0.0) 14.85 (± 12.84)

Family 66.38 (± 11.87) 7.86 (± 16.71) 28.77 (± 18.12) 0.0 (± 0.0)

Newspaper 81.81 (± 14.11) 0.92 (± 4.58) 17.28 (± 12.39) 0.0 (± 0.0)

Wines 89.46 (± 15.41) 5.20 (± 14.21) 1.95 (± 1.48) 0.0 (± 0.0)

Science 97.15 (± 0.87) 0.90 (± 1.80) 1.63 (± 1.64) 0.0 (± 0.0)

S.-W.-M. 84.86 (± 15.94) 8.6 (± 15.42) 6.88 (± 6.42) 0.0 (± 0.0)

NTN 89.11 (± 25.91) 5.17 (± 12.59) 5.35 (± 14.19) 0.37 (± 9.48)

values of λ. Table 6, reports the outcomes of such experiments for the case when
λ = .5.

Summarizing, the ALCN kernel function can be effectively used, jointly with
a SVM, to perform inductive concept retrieval, guaranteeing almost null com-
mission error and, interestingly, the ability to induce new knowledge. The per-
formance of the classifier increases with the increase of the number of individuals
populating the considered ontology and the homogeneity of their spread across
the concepts in the ontology.

These results are comparable to those obtained on an overlapping pool of
datasets with a nearest neighbor classification method based on a semantic dis-
tance [7].

6 Conclusions and Future Work

We investigated multi-relational learning techniques in the SW peculiar context.
Specifically, a kernel function has been defined for ALCN descriptions which
was integrated with a SVM for inducing a statistical classifier working with this
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complex representation. The resulting classifier was tested on inductive retrieval
and classification problems. Experimentally, it was shown that its performance
is not only comparable to a standard deductive reasoner, but it is also able to in-
duce new knowledge, which is not logically derivable. Particularly, an increase in
prediction accuracy was observed when the instances are homogeneously spread.

The induced classifier can be exploited for predicting or suggesting missing
information about individuals, thus completing large ontologies. Specifically, it
can be used to semi-automatize the population of an ABox. Indeed, the new
assertions can be suggested to the knowledge engineer that has only to validate
their inclusion. This constitutes a new approach in the SW context, since the
efficiency of the statistical and numerical approaches and the effectiveness of a
symbolic representation have been combined.

The main weakness of the approach is on its scalability towards more complex
DLs. While computing MSC approximations might be feasible, it may be more
difficult focusing on a normal form when comparing descriptions. Indeed, as long
as the expressiveness increases, the gap between syntactic structure semantics
of the descriptions becomes more evident. As a next step, we can foresee the
investigation of defining kernels for more expressive languages w.r.t. ALCN , e.g.
languages enriched with (qualified) number restrictions and inverse roles [1].

The derivation of distance measures from the kernel function may enable a
series of further distance-based data mining techniques such as clustering and
instance-based classification. Conversely, new kernel functions can be defined
transforming newly proposed distance functions for these representations, which
are not language dependent and allow the related data mining methods to better
scale w.r.t. the number of individuals in the ABox.
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Abstract. Integrating heterogeneous data from sources as diverse as web pages,
digital libraries, knowledge bases, the Semantic Web and databases is an open
problem. The ultimate aim of our work is to be able to query such heterogeneous
data sources as if their data were conveniently held in a single relational database.
Pursuant to this aim, we propose a generalisation of joins from the relational
database model to enable joins on arbitrarily complex structured data in a higher-
order representation. By incorporating kernels and distances for structured data,
we further extend this model to support approximate joins of heterogeneous data.
We demonstrate the flexibility of our approach in the publications domain by
evaluating example approximate queries on the CORA data sets, joining on types
ranging from sets of co-authors through to entire publications.

1 Introduction

An increasingly important problem is the integration of data from sources as diverse
as web pages, digital libraries, knowledge bases, the Semantic Web and databases that,
collectively, are referred to as heterogeneous data. Integration allows an application to
query the data using a single query language, just as if the data were a single homoge-
neous data source.

In this paper we combine two contrasting knowledge representational approaches
into a single coherent formalism that is well suited to the integration of heterogeneous
data. The first of these representational approaches, the relational model, is widely used
as the basis for relational databases and is accompanied by a well-defined algebra for
manipulating relational data. However, relational representations of complex structured
data can be difficult to design and even more difficult for a human to read. The second
representational approach, terms in a higher-order logic, offers a more human-readable
representation of structured data than the relational model but has no well-defined ana-
logue of the relational algebra for the querying of its terms. The formalism we introduce
here is a subset of relational algebra upgraded for terms in a higher-order logic, bring-
ing the well known and widely used join operator of relational algebra to the knowledge
representational formalism of higher-order terms. This new algebra incorporates a gen-
eralisation of the relational model to higher-order terms and we show that a join operator
from the relational model may be viewed as a special case of the higher-order join.

Data integration typically transforms heterogeneous data formats into a single homo-
geneous data format, usually into the format which has the most convenient algebra for
data integration rather than the format with the most natural representation of the data.
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In an ideal data integration scenario, where no uncertainty exists in the correspondences
between individuals from different data sources, the homogeneous data format chosen
is merely a technical implementation detail and places no restrictions on what may be
reliably integrated. Unfortunately, the more diverse the sources of data being integrated,
the more likely it will be that the integration involves a degree of uncertainty – for exam-
ple, in identifying correspondences between individuals from different data sources. In
order to automate such integration tasks, approximate matching techniques from statis-
tics, machine learning and data mining may be employed. However, the transformation
of data to the most widely used homogeneous format, relational data, obscures the data’s
natural type and structure, unnecessarily complicating the application of approximate
matching techniques. In this paper, we show that approximate matching can take place
without this obfuscating transformation to a relational representation. Our approach to
approximate matching for data integration uses kernels and distances applied directly
to representations of indivuals as (closed) terms in a higher-order logic.

The outline of the paper is as follows: Section 2 reformulates the traditional rela-
tional join from the relational model. Section 3 introduces the knowledge representa-
tional formalism and describes a family of kernels and distances on that formalism.
Section 4 upgrades the relational join to handle structured data. Section 5 investigates
the application of joins for structured data. The remaining sections review related work
and future directions before concluding.

2 Relational Joins

We first define the relational join in its exact form and then adapt this to define the
approximate relational join. Our definitions differ from those of the traditional relational
model in that we have not embedded attribute names, which are in fact database-specific
schema metadata, into the data representation. We assume throughout that there is an
associated schema for each relation. By keeping the metadata separate from the data we
achieve a more elegant upgrade from the relational model to the structured data model.

2.1 Exact Relational Joins

An n-tuple (x1, . . . , xn) is an element in D1 × · · · ×Dn where x1, . . . , xn are values
drawn from domains D1, . . . , Dn respectively. We refer to n-tuples as tuples unless
the value of n is significant. Item i ∈ {1, . . . , n} of a tuple t = (x1, . . . , xn) is the
value xi and is written t|i. A relation R of degree n is a finite set of n-tuples such that
R ⊆ D1 × · · · × Dn where D1, . . . , Dn are domains, which need not necessarily be
distinct. The relation index IR of a relation R of degree n is the set {1, . . . , n}.

Definition 1 (θ-Restriction). Let θ be a predicate θ : D × D → B for some domain
D. If A and B are relations with tuple items a|i ∈ D and b|j ∈ D respectively for
some (i, j) ∈ IA × IB , then the θ-restriction σiθj is defined on T ⊆ A×B as follows:
σi θj(T ) = {(a, b) | a|i θ b|j ∧ (a, b) ∈ T }.

The infix θ in the subscript of σ follows the historical convention from the relation
database literature and so i θj, or equivalently θ(i, j), does not mean that θ applies
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to i and j ; instead i θj is shorthand notation for the membership test a|i θ b|j for
all (a, b) ∈ T . The operator θ is typically drawn from the set {=, �=, <,≤, >,≥} but
does not necessarily have to come from this set. θ-restriction is often just referred to
as restriction and in such cases θ is assumed to be the equality operator. The name
selection is often used instead of restriction, but the latter avoids confusion with the
similarly named and better known select operator from SQL which has a somewhat
different meaning. Restriction is also sometimes defined as generalised restriction: Let
ϕ be a proposition that consists of atoms as allowed in θ-restriction and the logical
operators ∧, ∨ and ¬, then if A and B are relations, the generalised restriction σϕ is
defined on T ⊆ A × B as σϕ(T ) = { t | ϕ(t) ∧ t ∈ T }. Standard results show
that generalised restrictions can always be expressed as combinations of θ-restrictions.
θ-restriction is thus the basis of the following fundamental relational join operator.

Definition 2 (θ-Join). Let θ be a predicate θ : D ×D → B for some domain D. If A
and B are relations with tuple items a|i ∈ D and b|j ∈ D respectively for some (i, j) ∈
IA × IB , then the θ-join �i θj of A and B is defined as A �i θj B = σi θj(A×B).

When θ is equality the θ-join is called the equi-join. By replacing the θ-restriction oper-
ator in the θ-join by the generalised restriction operator we arrive at the definition of the
generalised join: Let ϕ be a proposition that consists of atoms as allowed in θ-restriction
and the logical operators ∧, ∨ and ¬. If A and B are relations then the relational join
�ϕ is defined as A �ϕ B = σϕ(A × B). Other non-fundamental joins include the
natural join, semijoin, antijoin, outer joins and inner joins [1,2]. For the purposes of
upgrading relational joins to handle structured data, it is sufficient to consider just the
θ-join and optionally, as a useful syntactic convenience, the generalised join.

2.2 Approximate Relational Joins

In order to turn an exact relational join into an approximate one it is necessary to replace
the exact θ operator in θ-restriction with a suitable approximate version. For example,
substituting exact equality = with an approximate equality ≈ enables joining on tuple
items that are either the same or in some way sufficiently similar.

One method of implementing approximate equality ≈ is to use a distance metric or
pseudo-metric dist, defined on the domain of a pair of relational tuple items, together
with a threshold δ to define a proximity relation.

Definition 3 (Proximity). If the function dist : D × D → R is a distance on pairs
of values from some domain D and δ ∈ R (δ ≥ 0) is a threshold then proximity is a
predicate≈ : D ×D → B defined by

∀x, y ∈ D (x ≈ y) ⇐⇒ {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ D}.

By the definition of distance, the co-domain of dist is not constrained to have an upper
bound. Some normalising function ϕ may be used to apply an upper bound to a distance.
The function ϕ : R → R must be a non-decreasing function from the positive reals
into some closed interval, typically [0, 1], such that ϕ(0) = 0, ϕ(v) > 0 if v > 0,
and ϕ(v + u) ≤ ϕ(v) + ϕ(u), for each v and y. Example choices of ϕ from [3] are
ϕ(v) = min(v, 1) or ϕ(v) = v

v+1 . Alternatively, the normalisation may be performed in
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the feature space of x, y ∈ D so that dist(x, y) is inherently normalised. For example,
if the distance is derived from a kernel then a normalising kernel may be used [4].

Definition 4 (Proximity-Join). Let ≈ : D ×D → B be a proximity for some domain
D. If A and B are relations with tuple items a|i ∈ D and b|j ∈ D respectively for some

(i, j) ∈ IA × IB , the proximity-join
∼
�i≈j of A and B is A

∼
�i≈j B = σi≈j(A×B).

The same historical notational convention is followed here for the subscripted ≈ as
for the subscripted θ described earlier for the exact θ-join. The proximity-join as de-
fined here is an approximate analogue of the exact relational equi-join. By choosing
other proximity relations that are approximate analogues of exact relations, for example
where θ ∈ {=, �=, <,≤, >,≥}, an approximate version of the relational θ-join might
be defined. In this paper we restrict our attention to the proximity-join.

3 Representing Structured Data

The relational model is now the de facto standard for database-driven applications in
data mining and computing in general, but it is not ideally suited for representing
semi-structured data such as Web pages and XML, nor structured data such as the
Semantic Web and RDF. However, the representation of such structures in relational
databases is commonplace using a multitude of (often tortuous) representations and
querying patterns. By contrast, the individuals-as-terms model offers straight forward
representations of both structured and semi-structured data while at the same time hav-
ing the representational capacity to represent relations from the relational model. The
individuals-as-terms representation is a generalisation of the relational model’s attribute-
value representation and collects all information about an individual in a single term.

We are not advocating the individuals-as-terms repesentation as a replacement for the
general purpose relational representation. But in the context of querying and merging
heterogeneous data, the individuals-as-terms representation more transparently models
the structure of the data in a way that is both human-readable and that explicitly exposes
that structure to machine learning and data mining algorithms.

The knowledge representational formalism we use as our individuals-as-terms rep-
resentation is basic terms, a family of typed terms in higher-order logic, which is based
on Church’s simple theory of types [5] with several extensions [3]. This formalism has
been chosen over the possible alternative of first-order logic because terms in the higher-
order logic natively support a variety of data types that are important for representing
individuals, including sets, multisets and graphs. Being a strongly typed logic, helps to
reduce search spaces and the type of terms provides useful metadata. The theory behind
the logic and the individuals-as-terms formalism is set out in [3] and we give only a
brief overview here.

We assume an alphabet consisting of: T the set of type constructors of various arities,
P the set of parameters, C the set of constants, and V the set of variables. Included in
T is the constructor Ω of arity 0 with a corresponding domain of {True, False}, the
booleans. Types are constructed from type constructors in T and type variables in P
using the symbols → for function types and × for product types. A type is defined
inductively as follows: (1) Each parameter in P is a type. (2) If T is a type constructor
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in T of arity k and α1, . . . , αk are types, then T α1 . . . αk is a type. (For k = 0, this
reduces to a type constructor of arity 0 being a type). (3) If α and β are types, then
α→ β is a type. (4) If α1, . . . , αn are types, then α1 × · · · × αn is a type. (For n = 0,
this reduces to 1 being a type). A type is closed if it contains no parameters. SC denotes
the set of all closed types obtained from an alphabet.

The set of constants C includes � (true) and ⊥ (false). A signature is the declared
type for a constant. A constant C with signature α is often denoted C : α. Let [] be
the empty list constructor with signature List a where a is a parameter and List is a type
constructor. Let # be the list constructor with signature a→ List a→ List a.

The terms of the logic are the terms of typed λ-calculus and are formed in the usual
way by abstraction, tupling and application from constants in C and a set of variables.
The set of all terms obtained from a particular alphabet is denoted L. A basic term is the
canonical representative of an equivalence class of terms [4,3]. The set of basic terms,
B, is defined inductively as follows: (1) Basic structures – If C is a data constructor
having signature σ1 → · · · → σn → (T ai . . . ak), t1, . . . , tn ∈ B (n ≥ 0), and t is
C t1 . . . tn ∈ L, then t ∈ B. (2) Basic abstractions – If t1, . . . , tn ∈ B, s1, . . . , sn ∈
B (n ≥ 0), s0 ∈ D and t is λx if x = t1 then s1 else . . . if x = tn then sn else s0 ∈
L, then t ∈ B. (3) Basic tuples – If t1, . . . , tn ∈ B (n ≥ 0) and t is (t1, . . . , tn) ∈ L,
then t ∈ B. See section 4 for examples and diagrams of basic terms.

3.1 Kernels and Distances for Basic Terms

Kernel functions [6] are an effective way of inducing distances on a wide variety of data
structures. One promising recent kernel function for structured data is the default kernel
for basic terms introduced in [4].

Definition 5 (Default Kernel for Basic Terms [4]). The function k : B ×B → R is
defined inductively on the structure of terms in B as follows.

1. If s, t ∈ Bα, where α = Tα1 . . . αk, for some T, α1, . . . , αk, then

k(s, t) =

{
κT (C, D) if C �= D

κT (C, C) +
∑n

i=1 k(si, ti) otherwise

where s is C s1 . . . sn and t is D t1 . . . tm.

2. If s, t ∈ Bα, where α = β → γ, for some β, γ, then

k(s, t) =
∑

u∈supp(s)
v∈supp(t)

k(V (s u), V (t v)) · k(u, v).

3. If s, t ∈ Bα, where α = α1 × · · · × αn, for some α1, . . . , αn, then

k(s, t) =
n∑

i=1

k(si, ti),

where s is (s1, . . . , sn) and t is (t1, . . . , tn).

4. If there does not exist α ∈ Sc such that s, t ∈ Bα, then k(s, t) = 0.
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The definition, assumes that for each type constructor T ∈ T, κT : XT ×XT → R is a
kernel on the set of data constructorsXT associated with T . Below we give an example
of the calculation of the default kernel for an example data structure: sets of strings.

Example 1 (Default Kernel on Sets of Strings). Let S be a nullary type constructor for
strings and A, B, C, D : S. Choose κS and κΩ to be the matching kernel. Let s be the
set {A, B, C} ∈ BS→Ω , t = {A, D}, and u = {B, C}. Then

k(s, t) = k(A, A)k(�,�) + k(A, D)k(�,�) + k(B, A)k(�,�)
+k(B, D)k(�,�) + k(C, A)k(�,�) + k(C, D)k(�,�)

= κS(A, A)κΩ(�,�) + κS(A, D)κΩ(�,�) + κS(B, A)κΩ(�,�)
+κS(B, D)κΩ(�,�) + κS(C, A)κΩ(�,�) + κS(C, D)κΩ(�,�)

= κS(A, A) + κS(A, D) + κS(B, A) + κS(B, D)
+κS(C, A) + κS(C, D)

= 1 + 0 + 0 + 0 + 0 + 0
= 1.

Similarly, k(s, u) = 2 and k(t, u) = 0.

Noting that valid positive semi-definite kernels induce pseudo-metrics [4], this allows
the derivation of a distance from any such kernel, including the kernel for basic terms,
as follows. Let k : X ×X → R be a kernel onX . The distance measure induced by k is
defined as dk(s, t) =

√
k(s, s)− 2k(s, t) + k(t, t). If k is a valid kernel the dk is well

behaved in that it satisfies the conditions of a pseudo-metric. Continuing the earlier sets
of strings example, the following example illustrates the calculation of a distance from
the default kernel for basic terms.

Example 2 (Default Distance on Sets of Strings). Let s = {A, B, C}, t = {A, D}, and
u = {B, C} where s, t, u ∈ BS→Ω . We have k(s, s) = 3, k(t, t) = 2 and k(u, u) = 2.
Then, dk(s, t) =

√
3− 3 + 2 = 1.73, dk(s, u) =

√
3− 4 + 2 = 1, and dk(t, u) =√

2− 0 + 2 = 2.

However, one of the strengths of the default kernel is that it allows any other valid
kernel to be associated with a specific type. For example, the following p-spectrum
kernel, defined on strings, is used in our experiments later in the paper.

Definition 6 (p-Spectrum Kernel [6]). The feature space F associated with the p-
spectrum kernel is indexed by I = Σp, with the explicit embedding from the space of
all finite sequences over and alphabet Σ to a vector space F and is given by φp

u(s) =
|{(v1, v2) : s = v1uv2}|, u ∈ Σp. The associated kernel is defined as κp(s, t) =
〈φp(s), φp(t)〉 =

∑
u∈Σp φp

u(s)φp
u(t).

4 Relational Joins for Structured Data

We now upgrade both exact and approximate relational joins for structured data. The
way we achieve this is to first upgrade the knowledge representation of the relation to
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be a set of basic terms rather than the traditional set of tuples. We then upgrade the
relation index so that it indexes parts of a basic term rather than the traditional parts of
a tuple. Once these two steps are completed, upgrading the exact relational join follows
almost automatically with only modest changes to the definitions of the θ-restriction
and joins. The final step then brings together the default kernel for basic terms and
the approximate join to arrive at the main result of an approximate relational join for
structured data. So to begin, we first upgrade the relation from section 2.1 to become
the basic term relation, which is a basic term of type α→ Ω.

Definition 7 (Basic Term Relation). A basic term relation R ⊆ Bα is a finite set of
basic terms of the same type.

In order to upgrade the relation index from section 2.1 so that it is applicable to the
basic term relation, a suitable method of indexing sub-parts of a basic term is re-
quired. Recall that well-formed basic terms can consist of basic structures (e.g. lists,
trees), basic abstractions (e.g. sets, multisets), basic tuples or arbitrary combinations of
these three.

4.1 Indexing Basic Terms

In the logic, sub-parts of a term are referred to as subterms and so we are concerned
with indexing the subterms of a basic term. The standard method for indexing subterms
in the logic enumerates a decomposition of a given term such that every subterm is
labelled with a unique string [3].

However, we introduce an alternative approach to indexing that, instead of enumer-
ating all subterms of a term, defines a type tree index set over all subtypes of the type
of a basic term. To do this we first adopt the definition of a type tree from [7] and then
define a different annotation of the tree such that every member of the type tree index
set identifies a set of terms rather than a single term. This ensures any index defined
on a type is meaningful across all terms of that type. Furthermore, the set of subterms
identified is guaranteed to consist entirely of well-formed basic terms.

To achieve this we follow the same interpretation of subtypes as [3] and restrict our
attention to basic terms whose basic structures are in canonical form as defined below.

Definition 8 (Basic Structures in Canonical Form). A type τ = T α1 . . . αk is a basic
structure in canonical form when, for all data constructors Ci : τi1 → · · · → τin → τ
that are associated with T , all the types of τij are subtypes of τ .

We begin our definition of the type tree index set with some preparatory notation. Let
Z+ denote the set of positive integers and (Z+)∗ the set of all strings over the alphabet of
positive integers, with ε denoting the empty string. io denotes the string concatenation
of i with o where i ∈ Z+ and o ∈ (Z+)∗.

Definition 9 (Type Tree Index Set). The type tree index set of a canonical type τ ,
denotedO(τ), is the set of strings in (Z+)∗ defined inductively on the structure of τ .
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1. If τ is an atomic type, thenO(τ) = {ε}.
2. If τ is a basic structure type τ = T α1 . . . αn in canonical form, with data con-

structors Ci : τi1 → · · · → τim → τ for all i ∈ {1, . . . , l}, then O(τ) =
{ε} ∪

⋃p
v=1{ vov | ov ∈ O(ξv)}, where ξ1, . . . , ξp are the types from αk where

αk = τij and τij �= τ , and assuming that for every τij �= τ there exists an αk such
that αk = τij .

3. If τ is a basic abstraction type β → γ, then O(τ) = {ε} ∪ { 1o | o ∈ O(β)} ∪
{ 2o | o ∈ O(γ)}.

4. If τ is a basic tuple type τ = τ1 × · · · × τn, then O(τ) = {ε} ∪
⋃n

i=1{ ioi | oi ∈
O(τi)}.

Part 1, the base case, states that types for which all the associated data structures have
arity zero, such as Ω (the type of the booleans), Int (the type of the integers), and Char
(the type of characters), have a singleton index set containing the empty string. Part 2
states that each subtype that occurs in the signatures of the associated data constructors,
and that is not itself of type τ of the basic structure, is labelled with a unique string. Part
3 labels the β and γ types of basic abstractions with a pair of unique strings. Similarly,
part 4 labels each tuple item in a basic tuple with a unique string.

The significance of defining indexing on the type tree of basic terms rather than
on the terms themselves is that each member of a type tree index set o ∈ O(τ) is
not uniquely tied to any individual term of type τ . This increases the generality of the
indexing such that each member of the type tree index set for type τ identifies, for any
basic term t : τ , an equivalence class of subterms rather than a single term. Thus O(t)
induces a set of equivalence classes on the subterms of t. We refer to the set of subterms
identified with a given member (index) of the type tree index set as the basic subterm
set at that index.

Definition 10 (Basic Subterm Set). If t is a basic term of type τ and o ∈ O(τ) then
the basic subterm set of t at type tree index o, denoted t|o, is defined inductively on the
length of o as follows.

1. If o = ε, then t|o = {t}.
2. If o = jo′, for some o′, and t has the form C t1 . . . tm, with associated type

T α1 . . . αn, then t|o = sj |o′ where sj = ti : τi such that τi �= τ and τi = αj .
3. If o = 1o′, for some o′, and t has the form if then else(u, v, s), then t|o = u|o′∪s|o.
4. If o = 2o′, for some o′, and t has the form if then else(u, v, s), then t|o = v|o′∪s|o.
5. If o = io′, for some o′, and t has the form (t1, . . . , tn), then t|o = ti|o′ , for i =

1, . . . , n.

A basic subterm set is a set of basic subterms of a basic term at some type tree index. A
basic subterm is proper if it is not at type tree index ε.

Basic subterms indexed in part 1, the base case, are singleton sets containing an atomic
term. Basic subterms indexed in part 2 are basic structures. Basic subterms indexed in
parts 3 and 4 are the support and value of basic abstractions, i.e. respective instances of
α and β, from α→ β. Basic subterms indexed in part 5 are basic tuples.

Below we give examples of a type tree index set and basic subterm sets for each
of basic tuples, basic structures, and basic abstractions. Starting with basic tuples in
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α1 × · · · × αn

ε

α1

1

. . . αn

n

(a)

M × N × O × P

ε

M

1

N

2

O

3

P

4

(b)

(A, B, C, D)

A

1

B

2

C

3

D

4

(c)

Fig. 1. Type-based indexing for basic tuples. (a) Type tree index for n-tuples of type α1 × · · · ×
αn. (b) Type tree index for 4-tuples of type M × N × O × P. (c) Basic subterm tree for term
(A,B, C, D) where A : M, B : N, C : O, D : P.

Example 3 where it can be seen that type-based indexing identifies all the tuple items,
but as singleton sets, and in addition it identifies the reflexive term at t|ε.

Example 3. If basic tuple t ∈ BM×N×O×P is the term t = (A, B, C, D), where A : M,
B : N, C : O, D : P, then the type tree index set of t is O(t) = {ε, 1, 2, 3, 4},
the derivation of which can be seen from Fig.1. The basic subterm sets of t are t|ε =
{(A, B, C, D)}, t|1 = {A}, t|2 = {B}, t|3 = {C} and t|4 = {D}.

Representing basic structures, the usual right branching representation of lists is given
in Example 4, where the basic subterm set at t|1 captures one meaning of a list as a set
of values and t|ε captures the meaning of a list as a set of sequences.

Example 4. If τ is a type of lists such that τ = List M, where M ⊆ B is a nullary type
constructor, with associated data constructors # and [], having signatures [] : List M,
and # : M → List M → List M, then the type tree index set of τ is O(τ) = {ε, 1}.
If basic terms s, t ∈ BList M are the lists s = [A, B, C] and t = [A, D], then as can be
seen from Fig.2, the basic subterm sets of s and t are s|ε = {[A, B, C], [B, C], [C], []},
s|1 = {A, B, C}, and t|ε = {[A, D], [D], []}, t|1 = {A, D}.

For basic abstractions, a set is given in Example 5 and a multiset in Example 6. For both
sets and multisets, t|1 captures the meaning as a set of values whereas t|2 will always
be {�} for sets and a set of multiplicities for multisets. A corollary of Definition 9 is
that the type tree index set of a basic abstraction type is always {ε, 1, 2}.

Example 5. If τ is a basic abstraction type representing sets such that τ = M → Ω,
where M ⊆ B is a nullary type constructor, then the type tree index set of τ is O(τ) =
{ε, 1, 2}. If basic term t = {A, B, C}, where A, B, C : M, then the basic subterm sets
are t|ε = {{A, B, C}}, t|1 = {A, B, C} and t|2 = {�}.

Example 6. If τ is a basic abstraction type representing multisets such that τ = M →
Nat, where M ⊆ B is a nullary type constructor and Nat, then the type tree index set
of τ is O(τ) = {ε, 1, 2}. If basic term t = {A, A, A, B, C, C}, where A, B, C : M,
then the basic subterm sets are t|ε = {{A, A, A, B, C, C}}, t|1 = {A, B, C} and
t|2 = {1, 2, 3}.
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List α
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#
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1
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Fig. 2. Type-based indexing for basic structures. (a) Type tree index for List α. (b) and (c) Basic
subterm trees for terms [A, B, C] and [A, D] of type List M where A, B, C, D : M.
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〈A, A, A,B, C, C〉
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1

3
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1

1
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C

1

2

2
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Fig. 3. Type-based indexing for basic abstractions. (a) Type tree index for type α → β. (b) Basic
subterm tree for set {A, B, C}, type M → Ω, where A, B, C : M and � : Ω. (c) Basic subterm
tree for multiset 〈A,A, A, B, C, C〉, type M → Nat, where A,B, C : M and 1, 2, 3 : Nat.

A useful and straight forward reformulation of type-based indexing is type name-based
indexing that, instead of enumerating the edges of the type tree, directly labels the ver-
tices of the type tree. The simplest approach being to assign a unique type name to
every vertex in the type tree. If the names assigned have no understandable meaning
to humans then this method offers no advantages over type-based indexing. However,
if the knowledge representational formalism used to define types and data instances
uses human-understandable names then type name-based indexing provides a useful
notation for referring to basic subterm sets, as illustrated in Example 7.

Example 7. Let Author be the type of authors from the publications domain, which
define declaratively in the Haskell style syntax from [4] as follows.

type Author = (Name,Publications);
type Name = String;
type Publications = List Publication;
type Publication = (Mode,Coauthors,Title,Venue,Year);
data Mode = Journal | Proceedings | ... | Book;
type Coauthors = Coauthor -> Bool;
type Coauthor = String;
type Title = String;
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type Venue = String;
type Year = Int;

This states that Author is a pair of Name and Publications, where Name is an alias for
String the type of strings, and Publications is a list of publications, which in turn is
a 5-tuple of Mode, Coauthors, . . . , Year, where Mode has the nullary data constructors
Journal, Proceedings, . . . , Book, and so on through to Year which is an alias for the type
Int, the type of the integers. Coauthors is a basic abstraction from Coauthor to Bool,
where Bool is the type Ω, i.e. Coauthors is a set of coauthors. To ensure the required
uniqueness of type names Coauthor, Title, Venue and Name are aliases for the type
String. The type tree index set is thus {Author, Author.Name, Author.Publications.Publi-
cation.Mode, . . . , Author.Publications.Publication.Year}.

A type tree index set generated using this method is isomorphic with that produced by
Definition 9, as illustrated informally in Fig.4. The constraint that all basic subtypes must
be uniquely named permits the following simpler definition of a basic subterm set.

Definition 11 (Basic Subterm Set (with named types)). If t is a closed basic term
of type τ and α ⊆ τ then the basic subterm set of t at type α, denoted t|α, is t|α =
{s | s occurs in t with type α}. A basic subterm set is a set of basic subterms of a basic
term at some type tree α ⊆ B. A basic subterm is proper if α �= τ .

Author = Name × Publications

ε

Name = String

1

Publications = List Publication

2

Publication = Mode × Coauthors × Title × Venue × Year

1

Mode

1

Coauthors = Coauthor → Ω

2

Coauthor = String

1

Ω

2

Venue = String

3

Year = Int

4

Fig. 4. Type name-based and type-based indexing for type Author

4.2 Indexing Basic Term Relations

Having upgraded our representation of a relation R : τ to handle structured data rep-
resented as basic terms, and having chosen a suitable indexing method for the basic
subterm set O(τ), we are now able to conveniently define the basic term relation index
as the structured data counterpart of the relation index.

Definition 12 (Basic Term Relation Index). The basic term relation index IR of a
basic term relation R of type τ is IR = O(τ).
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4.3 Exact Relational Join for Structured Data

The upgraded definitions of an exact relation join for structured data closely follow the
earlier relational definitions but now using basic term relations and indexing.

Definition 13 (Basic Term Projection). If t ∈ τ , where τ ⊆ B, then the basic term
projection π of t on i ∈ It is πi(t) = {s | s is the basic subterm at type tree index i}.

A basic term projection πi(t) may also be written as t|i.

Definition 14 (Basic Term Generalised Projection). If t ∈ B then the basic term
generalised projection π of t on ρ ⊆ It is the set πρ(t) = { t|i | i ∈ ρ }.

Definition 15 (Basic Term θ-Restriction). Let θ be a predicate θ : (Bα → Ω) →
(Bα → Ω) → Ω for some α ∈ Bα. If A and B are basic term relations with basic
terms a|i ⊆ Bα and b|j ⊆ Bα respectively for some (i, j) ∈ IA×IB, then basic term θ-
restriction σiθj is defined on T ⊆ A×B as σiθj(T ) = {(a, b) | a|i θ b|j ∧ (a, b) ∈ T }.

The predicate θ : (Bα → Ω)→ (Bα → Ω)→ Ω is defined on sets of basic terms. In
other words, θ is a predicate on basic term relations.

Definition 16 (Basic Term Generalised Restriction). Let ϕ be a proposition that con-
sists of atoms as allowed in basic term θ-restriction and the logical operators ∧, ∨ and
¬. If A and B are basic term relations then the basic term generalised restriction σϕ is
defined on T ⊆ A×B as σϕ(T ) = { t | ϕ(t) ∧ t ∈ T }.

Definition 17 (Basic Term θ-Join). Let θ : (Bα → Ω) → (Bα → Ω) → Ω be a
predicate for some type α ∈ B. If A and B are basic term relations with basic terms
a|i ⊆ Bα and b|j ⊆ Bα respectively for some (i, j) ∈ IA × IB then the basic term
θ-join �i θj of A and B is defined as A �i θj B = σi θj(A× B).

Definition 18 (Basic Term Generalised Join). Let ϕ be a proposition that consists of
atoms as allowed in basic term θ-restriction and the logical operators ∧, ∨ and ¬. If A
and B are basic term relations then the basic term join A �ϕ B = σϕ(A×B).

4.4 Approximate Relational Join for Structured Data

We assume some distance for basic terms and note that positive semi-definite kernels
induce pseudo-metric distances. One suitable kernel is the kernel for basic terms from
[4] and described earlier, but other kernels and distances may also be suitable.

Definition 19 (Basic Term Proximity-Join). Let ≈ : Bα ×Bα → Ω be a proximity
for some Bα of type α. If A and B are basic term relations with subterms a|i ∈ Bα

and b|j ∈ Bα respectively for some (i, j) ∈ IA × IB , then the proximity-join
∼
�i≈j of

A and B is defined as A
∼
�i≈j B = σi≈j(A×B).

This definition closely parallels that of the approximate relational join on account of the
following: the basic term relation is a set which allows the same set theoretic operators
from the relational case to apply; the basic term relation index fulfills the same role as
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the relation index from the relational case; and, finally, the kernel for basic terms’ own
inductive definition implicitly handles the often recursive nature of structured data. The
closeness in form of the definition of the basic term join to that of the relational join
facilitates the following result.

Proposition 1. Relational joins are a special case of basic term relational joins.

Proof. Assume relation R ⊆ D1 × · · · ×Dn for some domains D1, . . . , Dn. Assume
appropriate type constructors and data constructors such that D1, . . . , Dn ⊆ B. Let
basic term relation S ⊆ D1 × · · · × Dn. Let IR be the relation index of R and IS

be the basic term relation index of S. Clearly there is a surjection from IR into IS

and thus from the set of tuple items in each tuple in R to the set of subterms in each
corresponding basic term tuple in S. Assume the θ operators are available for basic
terms and the result follows. ��

5 Applications

We have implemented the higher-order relational projection, restriction and join opera-
tors and a range of supporting kernels, including the kernel for basic terms, in Prolog.
Although Prolog does not natively support the higher-order logic necessary to represent
data as basic terms, emulation of typed data, basic tuples, basic structures and basic ab-
stractions (including sets and multisets) has proven to be unproblematic in practice. We
are currently working to characterise and evaluate this framework using the application
domain of bibligraphic publications. Heterogenous data sets within this domain include
CORA, DBLP, Citeseer and Google Scholar. Interesting higher-order approximate joins
between pairs (A, B) of these datasets might, for instance, include the following.

– A
∼
�Author.name B, authors in A and B that have similarly names

– A
∼
�Author.affiliation B, authors in A and B affiliated to the same institution

– A
∼
�Author B, authors in A and B similar across all their properties

– A
∼
�Publication.venue B, publications in A and B from the same venue

– A
∼
�Publication.coauthors B, publications in A and B with similar coauthors

For the sake of evaluation we require the ground truth V for each join to be evaluated,
where V ⊆ A

∼
� B and, for the case where the individuals as terms represent publica-

tions, V = {(a, b) | a ∈ A ∧ b ∈ B ∧ a and b are variants of the same publication}.
The goal is to reconstruct V as V ′ = A

∼
�s B by choosing an appropriate s from the

intersection of the basic subterm sets of A and B. In reality, V is not usually available
for pairs of different data sets. For this reason we narrow down our initial evaluation to
consider self-joins, A

∼
�s A, on a single data set A = CORA, for which ground truths

are available [8]. CORA consists of bibliographic citations, hand-labelled with unique
identifiers so that variant citations of the same paper share the same identifier1.

1 The specific CORA data set used is an aggregation of all three CORA-REFS citation match-
ing data sets (fahl-labeled, kibl-labeled, and utgo-labeled). The raw CORA-REF files have
numerous XML mark-up errors which we have manually corrected to enabled parsing.
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Fig. 5. Dendrogram (above), showing clusterings at successive thresholds for a proximity-joins
on the CORA publication type, and (below) a close-up showing labelled ground truths

Given this supervised learning setting, a number of distance-based methods could
be used to implement the approximate join, including k-means, k-NN, and agglom-
erative hierarchical clustering. We chose the latter for this initial investigation on the
basis that it produces a dendrogram that is useful in visualising and charactering the
join. Although this is a clustering method more normally associated with unsupervised
learning, here we are able to make use of the ground truth labelling to achieve a su-
pervised setting. A dendrogram represents a progressive series of joins (or clusterings),
with instances in the same cluster being leaves of the same sub-tree. The distance value
at each non-terminal node represents a potential threshold δ at which to ‘cut’ the tree
and arrive at set of clusters. δ is the threshold from the proximity predicate from Def-
inition 19. To evaluate the quality of the clustering at a given δ we consider whether
each pair of instance data is correctly classified as being in the same cluster or in dif-
ferent clusters; in other words we evaluate a binary classification on all pairs of in-
stances to determine if the two instances in a pair refer to the same publication or to
different publications. A confusion matrix is then calculated in order to determine pre-
cision and recall for this specific value of δ. To characterise a proximity-join across a
range of thresholds we vary δ across the length of the tree and plot a precision-recall
chart.



240 S. Price and P. Flach

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

Publication
Publication.Coauthors
Publication.Title
Publication.Venue

Fig. 6. Precision and recall for various decompositions of CORA publication type

To represent the publications we choose the following type structure2.

type Publications = Publication -> Bool;
type Publication = (Coauthors,Title,Venue,Year);
type Coauthors = Coauthor -> Bool;
type Coauthor = String;
type Title = String;
type Venue = String;
type Year = String;

Hence by representing CORA as a basic terms relation of type Publications, where
BPublications ∈ B, we are able to execute the following basic term proximity-joins:

– CORA
∼
�Publication.Title CORA, a self join on only the publication’s Title subterm;

– CORA
∼
�Publication.Venue CORA, a self join on only the publication’s Venue subterm;

– CORA
∼
�Publication.Coauthors CORA, a self join on only the publication’s Coauthors

subterm, which is in turn a set of Coauthor subterms;
– CORA

∼
�Publication CORA, a self join on the entire Publication term.

For each join, to keep results comparable, we choose the p-spectrum(2) kernel for
strings and accept the default kernels for all other types. We do not optimise the de-
fault kernel for basic terms by choosing weighting modifiers that, for example, might
be used to encode the intuition that a year of publication is less discriminating than the
title of a publication when aggregated into an overall kernel on publications.

For each of these four joins we constructed a dendrogram such as Fig.5 and cal-
culated the corresponding precision-recall chart in Fig.6. Note that the trivial reflexive

2 Year is string rather than a numeric type due to non-numeric characters in the data. Also, Venue
is constructed as a concatenation of venue-related fields; CORA has no venue field.



Querying and Merging Heterogeneous Data by Approximate Joins 241

pairs, i.e. cluster sizes of 1, are ignored in the plots as they convey no useful information
here and so lines are not interpolated to the top left of the chart (recall=0, precision=1).
As would intuitively be expected, joins on Publication.Title is generally a better dis-
criminator of publications than Publication.Coauthors and Publication.Venue. How-
ever, the default kernel for basic terms clearly effectively aggregates the information
contained the subterms of Publication to outperform any single one of the three sub-
terms taken in isolation. The only exception being Publication.Title, which sometimes
outperforms its parent Publication above recall values greater than 0.9.

6 Related Work

Our work, to the best of our knowledge, is a unique combination of the relational model
with a higher-order representation and distance-based methods. Thus we now describe
our work with respect to related work in three related fields: relational learning, knowl-
edge representation, and distances for structured data.

In database literature and more recently, particularly since the advent of the Web,
within the relational learning literature, there has been considerable interest in the data
integration aspects of database deduplication and record linkage [9,10]. However, in
addition to dealing with heterogeneous data structures, our work adopts an individuals
as terms representation so that both type and structure of data is not obfuscated by tra-
ditional relational representations. Therefore our approach has the advantage of simpli-
fying data modelling and the application of approximate matching techniques. Despite
this, it should be noted that we propose the higher-order relational representation solely
as an approach for data integration tasks, not as a replacement for general purpose re-
lational databases. Our present implementation certainly has none of the optimisations
of a modern relational database. Ultimately though, a higher-order view could be lay-
ered on top of a traditional relational database system, efficiently combining the two
approaches, so that higher-order queries are automatically translated into and executed
as equivalent relational queries.

Our goal of integrating and querying heterogeneous data is also a goal shared by the
Semantic Web community [11]. The fundamental data model of the Semantic Web is
the directed labelled graph, represented as RDF triples, which may be queried using the
SPARQL query language [12]. Data structures such as lists, sets, multisets, trees and
graphs are readily supported through RDF Schema and the OWL ontology language
[13] and as such have similar representational advantages to basic terms as compared
to the relational model. SPARQL queries can be used to retrieve a subgraph describing
an individual that is analogous to a representation of that individual as a basic term.
Conversely, it is straight forward to transform the same subgraph into a basic term in
order to apply our own approach to RDF data. For RDF data integration, or smushing as
it is informally known, the emphasis in the Semantic Web languages to-date has been
on exact matching, using inverse-functional properties such as email addresses, home-
page URLs or entity URIs. This is an obvious shortcoming in the presence of noisy
data or representational variations between data from different sources. To address the
consequent data integration problem, work has been done in the area of ontology match-
ing, including work on measuring proximity between ontologies [14]. Our approximate
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matching work differs from this explicit semantic integration approach in that we rely
primarily on the implicit semantics of the type structure and data instances themselves.
This is an advantage in cases where detailed ontological information is not available but
potentially a disadvantage in other cases because background knowledge encoded in an
ontology is not exploited in our approximate joins. The incorporation of background
knowledge into our approximate joins is an area for future work.

Turning now to related work on distances, we first note that kernels and distances
used in this paper are not of themselves a contribution of our work. Also, the choice
of the default kernel for basic terms is not a specific requirement for the approximate
relational join; any distance for basic terms would be suitable. Prior work on distances
for logical terms includes distances between Herbrand interpretations [15] and between
first-order terms (including structures and lists) [16,17,18]. None of these directly apply
to basic terms and while it may be possible to apply distances on first-order terms to our
first-order representation of basic terms, the semantics of basic abstractions would be
lost as a result. Most closely related to our work, are various similarity-based methods
that have been upgraded to handle structured data [4,19,20]. Contrasting approaches
apply probabilistic models to take account of dependencies between resolution deci-
sions [21,22]. Most recently, a family of pseudo-distances over the set of objects in a
knowledge base has been introduced although not specifically for basic terms [23].

7 Conclusion

In this paper we have combined two contrasting knowledge representational approaches,
the relational model and basic terms, into a single coherent formalism that is well suited
to the integration of heterogeneous data. This, in conjuction with the default kernel for
basic terms has been shown to have potential for data integration and to be worthy of
further investigation.
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Abstract. Statistical Relational Learning has received much attention this last
decade. In the ILP community, several models have emerged for modelling and
learning uncertain knowledge, expressed in subset of first order logics. Neverthe-
less, no deep comparisons have been made among them and, given an application,
determining which model must be chosen is difficult. In this paper, we compare
two of them, namely Markov Logic Networks and Bayesian Programs, especially
with respect to their representation ability and inference methods. The compari-
son shows that the two models are substantially different, from the point of view
of the user, so that choosing one really means choosing a different philosophy
to look at the problem. In order to make the comparison more concrete, we have
used a running example, which shows most of the interesting points of the ap-
proaches, yet remaining exactly tractable.

1 Introduction

In the last years there has been an increasing interest in graphical models for reasoning
and learning. In particular, several approaches aiming at representing structured do-
mains, described in some subset of First Order Logic, have been proposed, such as, for
instance, Markov Logic Networks [RD06], Bayesian Logic Programs [KdR07], Prob-
abilistic Relational Models [FGKP99], Relational Bayesian Networks [Jae97, Jae02].
All these approaches rely on the possible-world semantics of first-order probabilistic
logic [Hal96], which assigns a probability distribution over possible worlds1. Stochastic
Logic Programs [Mug00] are slightly different in the sense that they extend stochastic
grammars and allow a distribution to be computed on the Herbrand base; in [Cus01],
they have been proven useful for representing undirected Bayes nets.

In this paper we review two statistical relational models, namely Markov Logic Net-
works and Bayesian Logic Programs, and we attempt a quantitative comparison be-
tween them. The reader is assumed to be familiar with both syntax and semantics of
First Order Logics, especially with clausal form representation.

Throughout this paper we will use a running example to perform the comparison.
Even though it is a very simple one, it shows most of the interesting features of a

1 Let us notice that Probabilistic Relational Models have been defined both on possible-world
semantics and on domain frequency semantics [Get06].

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 244–260, 2008.
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stochastic predicate logic knowledge base, yet remaining tractable, so that exact in-
ferences can be done.

Example 1. Let K be a knowledge base containing four rules:

F1 : R(X ,Y ) :− P(X),Q(Y ) F2 : S(X ,Y) :− P(X),Q(Y )
F3 : V (X ,Y ) :− Q(X),Q(Y ) F4 : R(X ,Y ) :− V (X ,Y )

In K the two rules F1 and F2 share the antecedent but have different consequents,
whereas F1 and F4 share the consequent, but have different antecedents. Moreover, if
C = {a,b} is the set of constants in the universe, the Herbrand base HBK , relative to
the knowledge base K , contains the following ground atoms:
HBK = {P(a),P(b),Q(a),Q(b),R(a,a),R(a,b),R(b,a),R(b,b),S(a,a),S(a,b),

S(b,a),S(b,b),V(a,a),V (a,b),V (b,a),V (b,b)}

The paper is organized as follows. Section 2 is devoted to Markov Logic Networks,
whereas we present Bayesian Logic Programs in Section 3. In Section 4 we compare
the two frameworks, and in Section 5 some conclusions are drawn.

2 First Order Logic Background

Classically, a first order language L is defined by a countable set V of variables, a set
F of function symbols (including functions with arity 0, also called constants) and a set
P of predicate symbols.

In this paper, we consider only function-free first-order languages that contain no
function symbols other that constants, and in the following, C denotes the set of con-
stants. With this restriction, a term is either a variable or a constant. A ground term is
a constant. The Herbrand Universe of L , denoted by HUL , is the set C of constants.
A substitution σ is a variable assignment that maps each variable X to a variable or to
a constant. An atom is an expression p(t1, . . . ,tn), where p is a predicate symbol and
t1, . . . , tn are either constants or variables. A ground atom is an atom that contains no
variables. The Herbrand Base of L , denoted by HBL , is the set of ground atoms.

A (positive) rule r is an expression A← B1, . . . ,Bk, where B1, . . . Bk are atoms. The
atom A is called the head of r and is denoted by head(r). The right-hand side B1, . . . ,Bk

is called the body of r and is denoted by body(r).
A (positive) program P is a set of positive rules. In the following, if P is a program,

Inst(P ) is the set of all ground rules obtained by substituting variables in P by ground
terms (c ∈ Inst(P ) when c is ground and there exists a clause c′ of P and a ground
substitution σ of variables of c′ s.t. c′σ = c)

In the following, HBP denote the Herbrand base of the first-order language, under-
lying the definition of program P .

An interpretation I is defined by giving a domain D, D �= /0, and by associating to
each constant c, c ∈ C, an element of D and to each predicate symbol p, p ∈ P, with
arity n, a function Ip : Dn→ {0,1}. A Herbrand interpretation I is an interpretation on
the Herbrand Universe that interprets each constant by itself.
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The semantics of a positive logic program can be defined as in the following:

Definition 1. Let P be a positive logic program. The semantics MP of P is defined as
the least fixpoint of the operator TP defined for a set a ground atoms I by:

TP (I) = {A ∈ HBP |∃C ∈ Inst(P ), head(C) = A and body(C)⊆ I}.
MP is the least Herbrand model of P , i.e., it is the set of ground atoms that are logical
consequences of P .

3 Markov Logic Networks

Domingos and co-workers have used the concepts of Markov Networks (MN) and of
Markov Logic Networks (MLN) to address the problem of making probabilistic infer-
ences in first order logic [RD06, KD05, DR04].

3.1 Markov Network Representation

A Markov Network (MN) is a model of the joint probability distribution over a set
X = (X1, ...,XN) of variables. More precisely, a Markov network is an undirected graph
G, with N nodes (each corresponding to one of the stochastic variables) and M edges,
and a set of potential functions Φk (1 � k � K). Each Φk is associated to a different
clique in the graph. Let x = (x1, ...,xN) ∈ X be a set of values that the variables can take
on; then, a Markov network is associated to the following probability distribution:

Pr(X = x) =
1
Z

e∑K
k=1 wk fk(x(k)) (1)

In (1) each function fk(x(k)) is a feature of the k-th clique, and wk is its weight. More-
over, Z is a normalization factor. Even though a feature can be any function, Domingos’s
approach focuses on binary features, i.e., f j(x(k))∈ {0,1}. Moreover, wk = ln Φk(x(k)).

A Markov Network is derived from a Markov Logic Network (MLN) and a set C =
{a1, ...,aC} of constants. A Markov Logic Network MLN = {(Fi,wi)|1 � i � M} is a
set of pairs (Fi,wi), consisting of a logical formula Fi, belonging to a knowledge base
K , and an associated real number wi. The logical language is function-free.

The association between MLN,C and a Markov network MN is performed as fol-
lows: let HBK be the Herbrand base of K . Each element of HBK is associated to a
node in the graph MN, which then represents a binary variable. Now we can ground all
formulas Fi (1 � i � M) in all possible ways. In MN two nodes are connected if they
appear together in at least one of the groundings of a formula Fi, for some i.

Example 2. By considering the knowledge base K of Example 1, we can define an
MLN as follows:

MLN = {(F1,w1),(F2,w2),(F3,w3),(F4,w4)},
where the Fi’s are the rules in K and w = (w1,w2,w3,w4) is a vector of weights.

Using the MLN of Example 1 and its Herbrand base HBK , we obtain the Markov
network MN reported in Figure 1. The network MN has N = 16 nodes and M = 31
edges.
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Fig. 1. Markov network corresponding to Example 3

Clearly, groundings of the same formula constitute cliques in MN. Each grounding
of each formula is a feature f j . To each grounding of the same formula Fi the same
weight wi, specified in MLN, is attached. We may notice, however, that in MN there
may appear spurious cliques, i.e., cliques that do not correspond to a grounding of
any formula. In the Markov network MN of Figure 1, there are 31 cliques of length 2
(equal to the number of edges in the graph), among which only 6 are maximal, and 16
cliques of length 3 (all maximal ones). In fact, in this case, the length-2 and length-3
cliques derive from different formulas and have different weights associated to them. In
particular, the length-2 cliques to be considered are the groundings of formula F4, and
some of formula F3. Of the sixteen length-3 cliques, only ten are true groundings, and
they are reported in Figure 2 (each one with its associated weight). A spurious clique
is, for instance, (Q(b), R(a,b), V(a,b)).

Let us now consider the set X of possible worlds. Given a world x ∈ X , all vari-
ables associated to the nodes of MN have a value in {true, false}. Correspondingly,
each feature f j , corresponding to the grounding of a formula, has the value 1, if the cor-
responding grounding is true, 0 otherwise. By reconsidering formula (3) and recalling
that wk = ln Φk(x(k)), we obtain the following final form for the probability distribution:

Pr(X = x) =
1
Z

e∑M
i=1 wi ni(x) =

1
Z

M

∏
i=1

ewi ni(x) (2)

In (2) ni(x) is the number of true groundings of formula Fi in x, or, in other words, the
number of features, corresponding to Fi, that are equal to 1 in x. Formula (2) will be the
one used in the computation of probabilities. However, it has to be noted that computing
the partition function Z is intractable, because it requires a number of steps O(2|MN|).
From (2) and Z, it is possible to compute the probability of any possible world x.

For the sake of exemplification, let w = (w1,w2,w3,w4) = (2,1.5,0.8,1.7) be the
weight vector associated to K . Using formula (3) with the weights introduced before,
it is possible to compute, in this simple case, the exact value of Z = 3.0225... · 1014(
3.023 ·1014.

From Figure 1 we see that the state space corresponding to the Markov network is
the space {0,1}16, consisting of all the possible truth value assignments to the binary
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Fi Formula Features Weight wi

F1 R(X,Y) :- P(X), Q(Y) (P(a), Q(a), R(a,a)) w1
(P(a), Q(b), R(a,b)) w1
(P(b), Q(a), R(b,a)) w1
(P(b), Q(b), R(b,b)) w1

F2 S(X,Y) :- P(X), Q(Y) (P(a), Q(a), S(a,a)) w2
(P(a), Q(b), S(a,b)) w2
(P(b), Q(a), S(b,a)) w2
(P(b), Q(b), S(b,b)) w2

F3 V(X,Y) :- Q(X), Q(Y) (Q(a), V(a,a)) w3
(Q(a), Q(b), V(a,b)) w3
(Q(b), Q(a), V(b,a)) w3

(Q(b), V(b,b)) w3
F4 R(X,Y) :- V(X,Y) (R(a,a), V(a,a)) w4

(R(a,b), V(a,b)) w4
(R(b,a), V(b,a)) w4
(R(b,b), V(b,b)) w4

Fig. 2. List of features associated to the formulas in the MLN of Example 2

variables associated to the nodes. The probability distribution over the possible worlds
can be written as follows:

Pr(X = x) =
1
Z

4

∏
k=1

ewknk(x) =
1
Z

e2 n1(x) · e1.5 n2(x) · e0.8 n3(x) · e1.7 n4(x) (3)

In equation (3), nk(x) is the number of features associated to formula Fk that are true
in the world x. In the extreme case when all the variables are true (let x1 be the corre-
sponding world), we have n1(x1) = n2(x1) = n3(x1) = n4(x1) = 4, and then:

Pr(X = x1) =
1
Z

e4 (2+1.5+0.8+1.7) =
e24

3.023 ·1014 = 8.76 ·10−5

On the opposite, when all the variables are false (let x0 be the corresponding world), we
still have n1(x0) = n2(x0) = n3(x0) = n4(x0) = 4, because all the rules’ premises are
false and hence all the groundings of the rules are true; then:

Pr(X = x1) = Pr(X = x0)

The following result could be easily shown:

Proposition. When the knowledge base K consists only of positive rules, then the
probability of the world where all the variables are false is the same as the probability
of the world where all all the variables are true, and this probability is maximal.

As a further example, let us consider the world x3 in which P(a) = 1, P(b) = 1, Q(a)
= 0, Q(b) = 1, R(a,b) = 0, S(a,b) = 1, R(b,b) = 0, S(b,b) = 0, R(b,a) = 1, S(b,a) = 0,
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R(a,a) = 0, S(a,a) = 0, V(a,a) = 0, V(b,b) = 0, V(a,b) = 1, V(b,a) = 0. In this world, we
have n1(x2) = 2,n2(x2) = 3,n3(x2) = 3,n4(x2) = 3, and, hence:

Pr(X = x3) =
1
Z

e2·2+1.5·3+0.8·3+1.7·3 = 2.94 10−8

We may notice that, from the point of view of computing probability distribution (2),
the translation of the Markov logic network MLN into the Markov network MN is
not useful. As spurious cliques may appear in the transformation, it is not possible to
write formula (2) from MN only. In fact, even though, in the general case, all cliques
contribute to the probability distribution with a potential function, in this case only those
that correspond to groundings of formulas in MLN must be considered, and these are
only a subset of all the cliques occurring in the network; then, a further check is needed
to discover which ones they are.

3.2 Inference

Given a Markov Logic Network MLN and a set C of constants, the central inference
problem can be formulated as follows:

”What is the probability that a ground formula ϕ1 is true, knowing that another
ground formula ϕ2 is true?”2.

In general, to find an answer to this question is intractable. Then, approximate al-
gorithms are to be used. Richardson and Domingos provide such an algorithm for the
special case where ϕ1 and ϕ2 are conjunctions of ground literals. The algorithm pro-
ceeds in two phases; the first one returns the minimal subset of the ground Markov
network required to compute Pr(ϕ1|ϕ2,MLN,C). The authors observe that the size of
the network returned may be further reduced by ignoring any ground formula which
is made true by the evidence (i.e., by ϕ2), and by removing the corresponding arcs
removed from the network.

The second phase of Richardson and Domingos’ algorithm performs inference on the
network returned in the first one, with the nodes in ϕ2 set to their values. Their algorithm
implementation uses Gibbs sampling. The basic Gibbs step consists of sampling one
ground atom given its Markov blanket. The Markov blanket of a ground atom is the
set of ground atoms that appear in some grounding of a formula with it. In a Markov
network, the Markov blanket of a node is the set of all its immediate neighbors. Let X
be the binary variable associated to a node in MN, and let B(X) be its Markov blanket.
The probability that X is true, given the state s of B(X), can be estimated through Gibbs
sampling as follows:

Pr(X = 1|B(X) = s) =
e∑M

i=1 wi·ni”(X=1,B(X)=s)

e∑M
i=1 wi·ni”(X=1,B(X)=s) + e∑M

i=1 wi·ni”(X=0,B(X)=s)
(4)

In (4) ni”(X = 0,B(X) = s) is the number of true features involving X , for X = 1 and
B(X) = s. The estimated probability is the fraction of samples in which the conjunction
is true, once the Markov chain has converged.

2 In the following, we use greek letters to denote ground formulas, not to be confused with the
rules in K .
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3.3 Learning

One way in which learning occurs is acquiring the weights, given the structure of the
Markov logic network. Weights can be learned from databases under the closed world
assumption: if an atom occurs in the database, it is true, otherwise it is assumed to
be false. If there are n possible ground atoms, a database is effectively a vector x =
(x1, ...,xk, ...,xn), where xk is the truth value of the k-th ground atom (xk = 1 if the atom
appears in the database, and xk = 0 otherwise).

The weights could be learned through maximization of the log-likelihood with re-
spect to the weights themselves, but this process is computationally intractable, and
Richardson and Domingos propose a more efficient method, based on the optimization
of the pseudo-likelihood:

Pr∗w(X = x) =
n

∏
k=1

Prw(Xk = xk|Bx(Xk)), (5)

where Bx(Xk) is the Markov blanket of Xk in data x. Optimization of equation (5) is
done using the limited-memory BFGS algorithm [LN89].

If the network structure has to be learned (totally or partially), any relational or ILP
learner could be used to the purpose.

4 Bayesian Programs

Kersting and De Raedt [KdR07] have proposed an approach based on Bayesian net-
works, extending the traditional notions of atom, clauses, and interpretation of a clause.
The core of their approach is the notion of Bayesian program.

4.1 Bayesian Programs

In Bayesian programs, the notion of Bayesian atom is introduced: it is built with a pred-
icate and with terms, but it takes a finite set of possible values, instead of simply true or
f alse. For instance, in first order logic, the marital status of a person (single, married,
divorced, . . . ) is represented either by introducing a predicate single(X), married(X),
. . . for each possible value, or by introducing a binary predicate status(X ,Y), where Y
is instantiated by a constant representing the marital status. Kersting and De Raedt sug-
gest to use a predicate status, where status(X) can take a finite set of possible values
{single, married, . . .}[KdR07]. Let us notice that in this framework, a classical atom
is a particular case of a Bayesian atom with two values {true, f alse}.

Definition 2. A Bayesian clause c is an expression A|A1, . . . ,An, where A, A1, . . . An

are Bayesian atoms. The atom A is called the head of c, written head(c), whereas
A1, . . . , An is called the body of c, written body(c). When n = 0, such a clause is called
a Bayesian fact. A Bayesian program is a finite set of Bayesian clauses. Moreover, for
each clause c there exists a conditional probability distribution cpd(c) that encodes
Pr(head(c)|body(c)).
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It is assumed that Bayesian clauses are range-restricted, i.e., all the variables that occur
in A also occur in A1, . . . , An.

Example 3. By transforming the knowledge base K of Example 1 into a Bayesian pro-
gram, we obtain four clauses:

PK = {[R(X ,Y )|P(X),Q(Y )], [S(X ,Y )|P(X),Q(Y )], [V (X ,Y )|Q(X),Q(Y )],
[R(X ,Y )|V (X ,Y )]}

Conditional probability distributions must be associated to the rules, in the form of
tables.

4.2 Semantics

A directed graph GP is associated to a Bayesian logic program P as follows: the nodes
of GP are the elements of MP , and there is an edge from x to y if there exists a clause c
of Inst-rel(P ) s.t. x ∈ body(c) and y = head(c).

An important point that differs from propositional Bayesian networks is that, given
a node y, there may be several clauses with head(c) = y. In such cases, there is an edge
starting from each ground atom occurring in the bodies of these clauses and ending at
y, thus losing in the graphical representation the structured information encapsulated in
the clauses.

As already mentioned, in a Bayesian logic program P a conditional probability dis-
tribution is associated to each clause. Nevertheless, as several clauses of Inst-rel(P )
may have the same head, it is necessary to define some combining rule [NH97] that
maps finite sets of conditional probability distributions P(A|Ai1 , . . . ,Aini

), i = 1, . . . ,m,
onto a single one P(A|B1, . . . ,Bk), where {B1, . . . ,Bk} ⊆ ∪m

i=1{Ai1 , . . . ,Aini
}. It is shown

that if MP �= /0, GP is acyclic, and each node is influenced by a finite set of random
variables, then P specifies a unique probability distribution over MP . Two rules that are
widely employed in Bayesian networks are Max and Noisy-Or.

4.3 Inference

Each Bayesian logic program specifies a propositional Bayesian net, where inference
can be done using standard available algorithms. The structure of the network follows
from the semantics of the logic program, whereas the quantitative aspects are encoded
in the conditional probability distributions associated to the nodes and in the combining
rule. The stochastic variables associated to the nodes of the net are the atoms occurring
in the least Herbrand model of the program, namely all ground atoms that are logically
entailed by the program. In order to make inference it is then necessary to provide some
ground facts, i.e., the truth values of some of the elements of the Herbrand base.

When the logic program is encoded as a propositional Bayesian net, any inference
algorithm can be used. Inference takes the form of answering a query, and this can be
done with or without available evidence. More formally, a query is the expression:

Q | E1, . . . ,Em
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where Q is a random variable and m � 0. Answering the query means to find the con-
ditional probability distribution:

Pr(Q | E1, . . . ,Em)

Inference without evidence. Answering Q without evidence (the case m = 0) amounts
to compute the probability distribution Pr(Q) over the possible values assumed by Q.
To compute this probability, it is not necessary to consider the whole network, but only
the part of it containing the relevant nodes, i.e., the nodes corresponding to the variables
that influence Q. In order to answer the query (in the probabilistic sense), Kersting et al.
[KDRK00] use a pruned AND-OR tree, which allows the probabilistic and logic com-
putations to be combined. A pruned AND-OR tree represents all proofs of the query,
because all branches leading to failures are pruned. It is interesting to note that each
ground atom has a unique pruned AND-OR tree. When the same ground atom A occurs
more than once in a tree, all nodes corresponding to it must be merged, so that the tree
becomes an AND-OR graph.

For computing the probabilities, to each branch from an OR to an AND node the
corresponding conditional probability distribution is associated. If Y is the random vari-
able corresponding to the considered OR node, its conditional probability distribution
is computed according to the combining rule for the predicate in Y .

Inference with evidence. Evidence takes the form of a set of ground random variables
{E1,E2, ...,En} and their associated values {e1,e2, ...,en}. The Bayesian network nec-
essary to compute the probability of the query random variable Q is the union of all
the pruned AND-OR graphs for the facts {Q,E1,E2, ...,En}. This network can be com-
puted incrementally, starting from the graph for Q and adding those corresponding to
each piece of evidence in turn. In this way, there is the guarantee that each node occurs
only once in the graph. Once the global graph is built up, any Bayesian net inference
engine can be used to compute Pr(Q | E1 = e1, ...,En = en).

4.4 Learning

Learning a Bayesian program may consist of two parts: learning the clauses, and learn-
ing the associated conditional probability distributions. For the first part, ILP algorithms
[MdR94] could be helpful. Once the Bayesian program is learned (or given), the proba-
bility distributions must be acquired. To this aim, Kerstings and de Raedt suggest that a
technique proposed by Koller and Pfeffer [KP97], based on the EM approach, could be
adapted. This algorithm makes two assumptions: (1) different data cases are indepen-
dent, and (2) the combining rules are decomposable, i.e., they can be expressed using a
set of separate nodes corresponding to different influences, which are then combined in
another node.

5 Comparison between the Two Models

In this section we will use the example introduced previously to make a comparison
between the two models. Given the knowledge base K of Example 1, let us now asso-
ciate to the rules of the knowledge base K some probability distributions, reported in
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P(X) Q(Y ) R(X ,Y ) P(X) Q(Y ) S(X ,Y )
true true (0.7,0.3) true true (0.3,0.7)
true f alse (0.5,0.5) true f alse (0.5,0.5)
f alse true (0.5,0.5) f alse true (0.5,0.5)
f alse f alse (0.5,0.5) f alse f alse (0.5,0.5)

Fig. 3. Probability distributions associated to the the first two clauses (F1 and F2) in K . The
0.5 values in the last three rows on the table indicate that there is total uncertainty about the
consequence of a rule, when the premise is false.

Q(X) Q(Y ) V (X ,Y ) V (X ,Y ) R(X ,Y )
true true (0.6,0.4) true (0.2,0.8)
true f alse (0.5,0.5)
f alse true (0.5,0.5) f alse (0.5,0.5)
f alse f alse (0.5,0.5)

Fig. 4. Probability distributions associated to the second two clauses (F3 and F4) in K . As in
Figure 3, a false premise does not supply any information about the truth of the consequence.

Figures 3 and 4. In addition, it is necessary to provide a combining procedure for those
rules that share the consequent. Let us assume here to use the Max combination rule.
Moreover, let us assume, as an example, that:

Pr(P(a)= 1)= 0.4, Pr(P(b)= 1) = 0.6, Pr(Q(a) = 1) = 0.5, Pr(Q(b) = 1)= 0.7

If we want to represent K and the probability distributions with the graphical model
associated to Kersting and de Raedt’s Bayesian program PK , we obtain the graph GP
depicted in Figure 5. Actually, this graph is reported here only for illustration purposes,
because it is not really built up, as only the part relevant to perform a required inference
is actually constructed.

As we may notice, the graph in Figure 5 has the same nodes as the one in Figure 1, but
the edges (in addition of being oriented) are different. For what concerns the probability
distributions, they can be embedded in the Bayesian model as they are, in the sense that
the same tables, reported in Figure 3 and 4 as related to the rules of the knowledge base,
can be considered associated to the corresponding edges in the graph, provided that
just one node for each ground predicate occurs. The combining rule

⊗
must be applied

when necessary. In our case, for instance:
Pr(R(a,b))|P(a),Q(b),V (a,b)) = Pr(R(a,b))|P(a),Q(b))

⊗
Pr(R(a,b))|V (a,b))

By numbering the node of the graph in Figure 5 from 1 to 16, we can write the usual
joint probability distribution over all nodes:

Pr(X1, ...,X16) =
16

∏
i=1

Pr(Xi | par(Xi)) (6)

Expression (6) is the analogue, in the Bayesian framework, of expression (4) in the
Markovian framework, and it can be used to perform inference, even without evidence.
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P(a) P(b) Q(a) Q(b)

R(a,a) R(a,b) R(b,b)R(b,a)

S(a,a) S(a,b) V(a,a) V(a,b) V(b,a) V(b,b)S(b,a) S(b,b)

Fig. 5. Global graph associated to the Bayesian logical program reported in Example 3. As it may
be seen, nodes R(a,a),R(a,b),R(b,a), and R(b,b) receive edges from the atoms occurring in the
bodies of both rule F1 and rule F4.

R(a,b)

V(a,b) P(a)

Q(b)

Q(a)

Q(b)

Q(a) Q(b)

P(a)

Pr(R(a,b) | P(a), Q(b))Pr(R(a,b) | V(a,b))

Pr(V(a,b) | Q(a), Q(b))

Pr(P(a))

Pr(Q(b))Pr(Q(a))

Fig. 6. AND-OR tree associate to the query Q = R(a,b). In the tree, the two occurrences of the
node Q(b) have been merged. Nodes [Q(a)Q(b)] and [P(a)Q(b)] are AND nodes, i.e., they are
true if all the children are true. Probabilities written on the edges are conditional distributions,
associated to the corresponding branches of the tree, whereas probabilities written outside the
nodes are a priori probabilities, and are associated to leaves in the tree.

In the Markovian framework it is not immediate to translate the probability distributions
given for K into the joint distribution (2).

Let us now consider the problem of answering the query ϕ1 = R(a,b), given that
Pr(P(a) = 1)) = 0.4,Pr(Q(b) = 1) = 0.7,Pr(Q(a) = 1) = 0.5. In Figure 6 the AND-
OR tree associated to the query is reported. Using the probabilities defined in Figures 3
and 4, we can construct the tables in Figures 7 and 8. We define by R1(a,b) the ground
predicate obtained from formula F1, and by R4(a,b) the one obtained from formula
F4. The probability Pr(R(a,b) = f alse) is the complement to 1 of Pr(R(a,b) = true).
These probabilities must be computed for each row of the table in Figure 7, and the
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P(a) Q(a) Q(b) P(a)Q(b) Q(a)Q(b) V (a,b) = (true, f alse)
0.4 0.5 0.7 0.28 0.35 (0.21,0.14)
0.4 0.5 0.3 0.12 0.15 (0.075,0.075)
0.4 0.5 0.7 0.28 0.35 (0.175,0.175)
0.6 0.5 0.7 0.42 0.35 (0.21,0.14)
0.6 0.5) 0.7 0.42 0.35 (0.175,0.175)
0.6 0.5 0.3 0.18 0.15 (0.075,0.075)
0.4 0.5 0.3 0.12 0.15 (0.075,0.075)
0.6 0.5 0.3 0.18 0.15 (0.075,0.075)

Fig. 7. The AND-OR tree of Figure 6 is used to compute the probability distribution of the query
R(a,b). In this table, the probability distribution of the random variable V (a,b) is computed for
each possible combination of P(a)∈ {1,0},Q(a)∈ {1,0}, and P(b)∈ {1,0}. The values reported
in the first three columns of the table derive from Tables 3 and 4.

R1(a,b) = (true, f alse) R4(a,b) = (true, f alse) R(a,b) = true
(0.7,0.3) 0.28 (0.32,0.68) 0.35 0.196
(0.5,0.5) 0.12 (0.35,0.65) 0.15 0.06
(0.7,0.3) 0.28 (0.35,0.65) 0.35 0.196
(0.5,0.5) 0.42 (0.32,0.68) 0.35 0.21
(0.5,0.5) 0.42 (0.35,0.65) 0.35 0.21
(0.5,0.5) 0.18 (0.35,0.65) 0.15 0.09
(0.5,0.5) 0.12 (0.35,0.65) 0.15 0.06
(0.5,0.5) 0.18 (0.35,0.65) 0.15 0.09

Fig. 8. The query R(a,b) can be answered through two rules, F1 and F4 (see Example 1).
The results from these two rules must be combined. In the third column only the probability
Pr(R(a,b) = true is reported.

results are reported in Figure 8.The third column is computed according to the following
combining rule:

Pr(R(a,b) = 1) = Max{Pr(R1(a,b) = 1),Pr(R4(a,b) = 1)}

Concerning the Markovian framework, in order to estimate the probability of R(a,b),
we have to sample from its Markov blanket, knowing the state of this last (see, formula
(6)). The rows in Figures 7 and 8 correspond to different states of the Markov network,
depending on the truth of P(a),Q(b) and Q(a). Let us consider the case, as an example,
of P(a) = 1,Q(b) = 1 and Q(a) = 1, which are then the evidence. First of all, we have
to extract, using the first part of Richardson and Domingos’ algorithm, the relevant part
of the net, which is reported in Figure 9.

The probability distribution over the nodes in Figure 9, which is the marginal of
distribution (4) with respect to the interested variables, is the following one:

Pr(X′ = x′)≡ Pr(X1 = x1,X2 = x2,X4 = x4,X5 = x5,X15 = x15) =
1
Z′

ew1·n′1(x′) ew3·n′3(x
′) ew4·n′4(x′),
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P(a)

Q(a) Q(b)

R(a,b)

V(a,b)

X1 X5

X4

X2

X15

Fig. 9. Part of the Markov network of Figure 1 necessary to compute
Pr(R(a,b)|P(a),Q(a),Q(b),MN,C). Nodes P(a),Q(b), and Q(a) are evidence nodes, whereas
R(a,b) is the query node.

where x′ is a subvector of x only involving the surviving variables, and n′i is the number
of cliques that are true in the subgraph of Figure 9. In order to proceed further, we
have to assume to have estimated a suitable vector of weights w. If this is the case, we
may apply Gibbs samplig to the subgraph in Figure 9, obtaining thus an estimate of
Pr(R(a,b)), using the same procedure exemplified in Section 3.

Let us now give a last example for illustrating the differences that appear when mod-
elling a knowledge base in both frameworks.

Example 4 (Communication Modelling)
We aim at modelling different ways of communicating between people. Let us con-
sider the following Markov Logic Network MLN = {(Fi,wi)|1 � i � 6}, constructed
by adding weights to the rules of a knowledge base K :

(F1,1.8) = phone(X ,Y) :− f riends(X ,Y ),communic(X ,Y)
(F2,1.2) = email(X ,Y ) :− f riends(X ,Y ),communic(X ,Y)
(F3,1.0) = phone(X ,Y) :− coworkers(X ,Y ),communic(X ,Y)
(F4,2.0) = email(X ,Y ) :− coworkers(X ,Y ),communic(X ,Y)
(F5,2.0) = coworkers(X ,Z) :− coworkers(X ,Y ),coworkers(Y,Z)
(F6,0.8) = f riends(X ,Y ) :− coworkers(X ,Y )

Let moreover C = {Ann,Bob,Tom} be a set of constants.
In the framework of Bayesian logic programs, such knowledge can be represented by

the same set of formulas, but we can also use the notion of Bayesian atoms to represent
it in a more concise way. We can for instance introduce a predicate comean taking
different values phone, email, . . . , leading thus to

commean(X ,Y) | f riends(X ,Y ),communic(X ,Y)
commean(X ,Y) | coworkers(X ,Y ),communic(X ,Y)

coworkers(X ,Z) | coworkers(X ,Y ),coworkers(Y,Z)
f riends(X ,Y ) | coworkers(X ,Y )

A conditional probability must be associated to each of the clause. For instance, for the
first clause, we could have:
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communic(Y,X) f riends(X ,Y ) Pr(commean(X ,Y)|body)(phone,mail)
true true (0.7,0.3)
true f alse (0.5,0.5)
f alse true (0.5,0.5)
f alse f alse (0.5,0.5)

There is still another way of representing this knowledge, namely by introducing
a predicate relation that can take three values { f riend,coworker,none} The first two
rules can then be written with a single rule. On the other hand, the last two rules must
be generalized, thus requiring more probabilities to be given.

commean(X ,Y) | relation(X ,Y),communic(X ,Y )
relation(X ,Z) | relation(X ,Y),relation(Y,Z)
relation(X ,Y ) | relation(X ,Y)

communic(Y,X) relation(X ,Y ) Pr(commean(X ,Y)|body)(phone,mail)
true f riend (0.7,0.3)
true coworker (0.2,0.8)
true none (0.5,0.5)
f alse f riend (0.5,0.5)
f alse coworker (0.5,0.5)
f alse none (0.5,0.5)

relation(X ,Y) relation(Y,Z) Pr(relation(X ,Z)|body)(phone,mail)
true f riend (0.7,0.3)
true coworker (0.2,0.8)
true none (0.5,0.5)
f alse f riend (0.5,0.5)
f alse coworker (0.5,0.5)
f alse none (0.5,0.5)

6 Conclusions

According to Section 4, the two models, Markov Logic Networks and Bayesian Logic
Programs, are essentially different, at least for what concerns representation and infer-
ence. The Markov framework, being based on computing probabilities according to the
numbers of true groundings of formulas in the knowledge base, assigns high probabil-
ity to many groundings corresponding to false premises, whereas the Bayesian model
suspends the judgement, giving a neutral probability assignment to these cases. For the
user point of view, using Markov networks is then rather counterintuitive, because when
many rules have a false premise, a drift towards neutrality (probability near 1/2 or near
to some a-priori value) would be more intuitively acceptable than a high probability
assignment.

In Richardson and Domingos’ approach, general formulas are considered, but they
do not address the semantics of negation. A weight is associated to a formula. All the
instantiations of a same formula have the same weight.
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In Kersting and de Raedt’s approach only Datalog clauses are considered, and they
distinguish two types of predicates: logical (which can be either true or false) and
Bayesian (which can assume values in a given set). The definition of Bayesian atoms
allows different probabilities to be assigned, depending on the values of the atoms in the
bodies. On the other hand, this facility complicates the probability distribution tables.

Given a knowledge base, the Bayesian approach seems more natural and easier to be
built up and understood. We may notice that the graphical models may be very large.
In the Markovian approach the graph is built up and then it is reduced when evidence is
given. In the Bayesian approach the complete graph is not constructed, but, adding the
known facts to the knowledge base, only the relevant part of it is actually constructed.

Even though, formally, both Markov and Bayesian networks can be reduced to a
common representation, important differences, at the semantic level, may direct the user
to the choice of one or the other approach. One difference resides in the parameters that
the user must provide, in order to build the model. In the Markov network approach,
the user must provide the weight of the formulas in the knowledge base K . Once the
weight are provided, any query can be answered. As always with weights, the user may
or may not be able to give useful weights; in this case, in addition, he/she may have an
idea of the range of probabilities that he/she is expecting for a given query, given the
evidence. To provide weights consistent with his/her expectations may be very difficult
for the user. In the Bayesian approach, the user must provide the conditional probability
distributions, which also may be difficult, even though these distributions are local, and
hence more close to the user’s understanding.

Both models can avoid asking the user for the parameters, and automated learning
can be applied. In this case, the burden on the user is lifted, but still the interpretation
of the results poses different challenges.

A final issue regarding the representation is the combination rule, which allows rules
with the same consequent to be merged. In the Markov network approach, no explicit
combination rule exists, because combination is taken into account in the assignment
of values to the cliques’ features. In the Bayesian model, the combination rule must be
explicitely provided. Globally, the Bayesian model construction has more degrees of
freedom.

Concerning inference, both models try to answer a query, given evidence. To an-
swer a query means, in both, to compute the probability of a formula. The Bayesian
approach restricts the Bayesian network to the atoms occurring in the least Herbrand
model. The facts must be given in the knowledge base. In order to make inference on a
given atom, all its proofs must be computed, considering Bayesian rules as logical rules
and combining the associated probabilities. Both models are intractable, and must revert
to approximations to make inferences. In the Markov network approach, approximate
inference is done, by using Gibbs sampling on the Markov blanket of the nodes in the
network. Then, the complexity of the inference depends on the size of the relevant part
of the Markov network extracted from the global one by Richardson and Domingos’
algorithm. In the worst case, the size os this subnetwork may coincide with that of the
global one.

In the Bayesian approach it is not clear what approximations are suggested, ex-
cept those that can be applied to generic Bayesian networks. Also in this case, the
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computational complexity of the inference is determined by the size of the network cor-
responding to the least Herbrand universe. The inference process, per se, has the same
complexity as the best algorithm that work on Bayes nets.

Finally, learning is the more similar issue in the two approaches. In fact, learning the
knowledge base can be done with an ILP learning algorithm in both cases, and then the
weights or the conditional probability distributions can be estimated from a set of data.
The Bayesian approach is described as an example of the learning from interpretations
framework.

Acknowledgements. Christel Vrain’work is partly supported by the ANR project 071N:
Semi-supervised learning of graph structure by statistical and relational approaches:
towards the identification of biological networks from heterogeneous data.
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Abstract. This paper considers the following induction problem. Given
the background knowledge B and an observation O, find a hypothesis
H such that a consistent theory B ∧ H has a minimal model satisfy-
ing O. We call this type of induction brave induction. Brave induction
is different from explanatory induction in ILP, which requires that O is
satisfied in every model of B ∧ H . Brave induction is useful for learn-
ing disjunctive rules from observations, or learning from the background
knowledge containing indefinite or incomplete information. We develop
an algorithm for computing brave induction, and extend it to induction
in answer set programming.

1 Introduction

Logical foundations for induction is one of the central topics in machine learn-
ing, and different theories of induction have been proposed in the literature
[1,2,3,4,13,14,15,19,21,25]. A typical induction task constructs hypotheses to ex-
plain an observation (or examples) using the background knowledge. More pre-
cisely, given the background knowledge B and an observation O, a hypothesis
H covers O under B if

B ∧H |= O (1)

where B ∧ H is consistent. This style of induction is often called explanatory
induction [8] and is usually used in inductive logic programming (ILP) [20].

By the definition, explanatory induction requires that a possible solution H
together with B logically entails O. In other words, O is true in every model
of B ∧ H . This condition is often too strong for building possible hypotheses,
however. Suppose that there are 30 students in a class. Of which 20 are European,
7 are Asian, and 3 are American. The situation is represented by the background
knowledge B and the observation O:

B : student(1) ∧ · · · ∧ student(30),

O : euro(1) ∧ · · · ∧ euro(20) ∧ asia(21) ∧ · · · ∧ asia(27) ∧ usa(28) ∧ · · · ∧ usa(30),

where each number represents individual students. In this case, the following
clause, saying that every student is either European, Asian, or American, appears
a good hypothesis:

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 261–278, 2008.
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H : euro(x) ∨ asia(x) ∨ usa(x) ← student(x) . (2)

Unfortunately, however, H does not satisfy the relation B ∧ H |= O. In fact,
B ∧H has many models in which O is not true. An instance of such a model is:
{ student(1), . . . , student(30), euro(1), . . . , euro(30) }.

Explanatory induction in ILP has been mainly used for learning Horn theories.
When the background knowledge B and a hypothesis H are Horn theories, B ∧
H has the unique minimal model (or the least model), and the relation (1)
represents that O is true in the least model. In this case, the relation (1) is
necessary and sufficient to make O an explanatory consequence of B ∧ H . On
the other hand, when B or H contains indefinite information, B ∧H becomes a
non-Horn theory which has multiple minimal models in general. An observation
O might be true in some minimal models of B ∧ H but not every one. In this
case, however, the relation (1) excludes a hypothesis H due to the existence of a
single minimal model in which O is not true. As a result, meaningful hypotheses
might be unqualified as presented above.

To cope with the problem, this paper introduces a weak form of induction
called brave induction. In contrast to explanatory induction, brave induction
defines that a hypothesis H covers O under B if O is true in some minimal
model of B ∧H . By the definition, brave induction is weaker than explanatory
induction, and the hypothesis (2) becomes a solution of brave induction.

This paper introduces a logical framework of brave induction and develops a
procedure for computing hypotheses in brave induction. The proposed framework
is further extended to induction from nonmonotonic logic programs in answer
set programming [16]. The rest of this paper is organized as follows. Section 2
introduces the framework of brave induction and develops its computational
method. Section 3 applies brave induction to nonmonotonic logic programming.
Section 4 discusses related issues, and Section 5 concludes the paper.

2 Brave Induction

2.1 Logical Framework

We first introduce a logical framework of induction considered in this paper. A
first-order language L consists of an alphabet and all formulas defined over it.
The definition is the standard one in the literature [20]. For induction we use a
clausal language which is a subset of L.

A clausal theory (or simply a theory) is a finite set of clauses of the form:

A1 ∨ · · · ∨Am ∨ ¬Am+1 ∨ · · · ∨ ¬An (n ≥ m ≥ 0)

where each Ai (1 ≤ i ≤ n) is an atom. Any variable in a clause is assumed to be
universally quantified at the front. A clause of the above form is also written as

A1 ∨ · · · ∨Am ← Am+1 ∧ · · · ∧An . (3)

A1 ∨ · · · ∨Am is the head of the clause, and Am+1 ∧ · · · ∧An is the body. Given
a clause C of the above form, head(C) represents the set {A1, . . . , Am } and
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body(C) represents the set {Am+1, . . . , An }. A clause C is often identified with
the set of literals {A1, . . . , Am, ¬Am+1, . . . ,¬An }. A Horn clause is a clause
of the form (3) with m ≤ 1. A Horn theory is a finite set of Horn clauses. A
theory is identified with the conjunction of the clauses in it. A theory, a clause
or an atom is ground if it contains no variable. A ground substitution θ replaces
variables x1, . . . , xk occurring in a clause C (resp. an atom A) to ground terms
t1, . . . , tk in Cθ (resp. Aθ). A ground clause C is prime with respect to a theory
T if T |= C but T �|= C′ for any C′ ⊂ C. A conjunctive normal form (CNF)
formula is a conjunction of disjunction of literals, and a disjunctive normal form
(DNF) formula is a disjunction of conjunction of literals. A CNF formula or a
DNF formula is ground if it contains no variable. A DNF formula F = c1∨· · ·∨ck

is irredundant if F �≡ F ′ for any F ′ = c1 ∨ · · · ∨ ci−1 ∨ ci+1 ∨ · · · ∨ ck (1 ≤ i ≤ k).
The domain of a theory T is given as the Herbrand universe HU and an

interpretation of T is defined as a subset of the Herbrand base HB. An in-
terpretation I satisfies a ground clause (3) if {Am+1, . . . , An } ⊆ I implies
{A1, . . . , Am } ∩ I �= ∅. An interpretation I satisfies a theory T if I satisfies
every clause in T . In this case, I is a model of T and Mod(T ) represents the
set of all models of T . A model M ∈ Mod(T ) is minimal if N ⊆ M implies
M ⊆ N for any N ∈ Mod(T ). The set of minimal models of T is written as
MM(T ). A theory T entails a formula F (written as T |= F ) if F is true in any
I ∈ Mod(T ). A theory T is consistent if Mod(T ) �= ∅; otherwise, T is incon-
sistent . A conjunction C of ground atoms is identified with the set of ground
atoms in C.

Let B, O and H are all consistent theories, where B, O, and H are respectively
called a background knowledge, an observation, and a hypothesis. We assume that
B, O and H have the same HU and HB. The task of induction is to construct
H when B and O are given. Formally, given the background knowledge B and
an observation O, a hypothesis H covers O under B if

B ∧H |= O (4)

where B ∧ H is consistent. This type of induction is called explanatory induc-
tion [8] or learning from entailment [3], and is usually used in inductive logic
programming (ILP) [20]. As presented in the introduction, however, explanatory
induction is too strong for handling indefinite disjunctive information. To relax
the condition of explanatory induction, we introduce a weak form of induction.

Definition 2.1. (brave induction) Let B be the background knowledge and
O an observation. A hypothesis H covers O under B in brave induction if a
consistent theory B∧H has a minimal model satisfying O. H is called a solution
of brave induction.

The above definition requires that an observation is satisfied in some minimal
model of a consistent theory B ∧H . This is in contrast to the definition of ex-
planatory induction in which an observation must be satisfied in every minimal
model of B∧H . In this sense, explanatory induction of (4) is also called cautious
induction, hereafter. These names are taken from brave/cautious reasoning in
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nonmonotonic logics [18] and disjunctive logic programs [6]. A formula F is a
consequence of cautious inference in a theory T if it is true in every minimal
model of T , while F is a consequence of brave inference in T if F is true in some
minimal model of T .1 When a theory contains indefinite or incomplete informa-
tion, brave inference infers more results than cautious inference in general. Brave
and cautious inferences have been used in different reasoning tasks of deduction
and abduction in artificial intelligence. Thus, it is natural to apply brave infer-
ence to induction from non-Horn theories containing indefinite or incomplete
information. The utility of brave induction has already been illustrated in the
introductory example. Some properties of brave induction are provided. In what
follows, B, O, and H represent the background knowledge, an observation, and
a hypothesis, respectively.

Proposition 2.1. Brave induction has a solution iff B ∧O is consistent.

Proposition 2.2. If H covers O under B in cautious induction, H is a solution
of brave induction. The converse implication also holds when B is a Horn theory.

Proposition 2.3. If H is a solution of brave induction, B∧H∧O is consistent.

Proposition 2.4. For any theory H ′ |= H such that B ∧H ′ is consistent, if H
is a solution of brave induction, so does H ′.

Proof. The result holds by B ∧H ′ |= B ∧H . ��

Proposition 2.4 allows us to search the most specific solutions (under implication)
rather than all theories. Brave induction is nonmonotonic, that is, two solutions
cannot be merged in general.

Proposition 2.5. The fact that both H1 and H2 are solutions of brave induction
does not imply that H1 ∧H2 is a solution.

Example 2.1. Let B = { p(a) ←} and O = { q(a) ∨ r(a) ←, ← q(a) ∧ r(a) }.
Then, both H1 = { q(x)← p(x) } and H2 = { r(x)← p(x) } cover O under B in
brave induction, but H1 ∧H2 is not.

In Example 2.1, H1 and H2 cover O under B in cautious induction, but H1∧H2

is not. Thus, explanatory induction is also nonmonotonic.

Proposition 2.6. If H1 and H2 are solutions of brave induction, so is H1∨H2.

Cautious induction also satisfies Proposition 2.6.

Proposition 2.7. The fact that H covers both O1 and O2 under B does not
imply H covers O1 ∧O2 under B in brave induction.

Example 2.2. Let B = { p(x) ∨ q(x) ← r(x), s(a) ←}, O1 = { p(a) }, and
O2 = { q(a) }. Then, H = { r(x) ← s(x) } covers both O1 and O2 under B in
brave induction, but H does not cover O1 ∧O2 under B.
1 Cautious/brave inference is also called skeptical/credulous inference.
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In cautious induction, on the other hand, if H covers both O1 and O2 under
B, so does O1∧O2. Thus, Proposition 2.7 provides a property that distinguishes
brave induction from cautious one.

When B has a minimal model satisfying O, O is inferred by brave inference
from B. In this case, H = true covers O, which is a trivial and uninteresting
solution. The problem of our interest is the case in which B has no minimal
model satisfying O. In other words, ¬O is derived from B under the general-
ized closed world assumption (GCWA) [17]. It is worth noting that explanatory
induction in Horn theories finds a hypothesis H when a Horn theory B has no
minimal model satisfying O. In this case, ¬O is derived from B under the closed
world assumption (CWA) [22]. Thus, brave induction in non-Horn theories is
considered a natural extension of explanatory induction in Horn theories.

2.2 Computation

In this section, we develop an algorithm for computing brave induction. Through-
out the section, we assume that (1) any observation O is a conjunction of ground
atoms,2 and (2) any hypothesis H is a finite clausal theory such that each clause
has the non-empty head. The first condition is assumed as the normal problem
setting in ILP [20]. The second condition is also natural because we are interested
in getting any clause which derives an observation together with the background
knowledge. The next proposition characterizes the brave induction problem.

Proposition 2.8. Let B be the background knowledge, H a hypothesis, and O
an observation. Then, B ∧ H has a minimal model satisfying O iff there is a
disjunction F of ground atoms such that B ∧H |= O ∨ F and B ∧H �|= F .3

Proof. (→) Suppose that B ∧ H has a minimal model M such that M |= O.
Consider a disjunction F of ground atoms satisfying (i) M �|= F and (ii) N |= F
for any N ∈ MM(B ∧H) such that N �|= O. Such F is constructed by picking
up ground atoms from each N \M . Then, B ∧H |= O ∨ F holds. As M �|= F ,
B ∧H �|= F .

(←) Suppose that B ∧H |= O ∨F holds for a disjunction F of ground atoms
and B ∧H �|= F . If B ∧H has no minimal model satisfying O, B ∧H |= O ∨ F
implies B ∧H |= F . This contradicts the assumption that B ∧H �|= F . ��

Step 1: Computing ground hypotheses
By Proposition 2.8, a solution of brave induction is obtained by computing H
satisfying

B ∧H |= O ∨ F (5)
and

B ∧H �|= F . (6)

2 A conjunction O is identified with the set of ground atoms in it.
3 Related results are shown in [9, Theorem 4.5] in the context of circumscription, and

in [12, Corollary 3.5] in terms of abduction.
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By (5), it holds that
B ∧ ¬O |= ¬H ∨ F. (7)

¬H∨F is thus obtained by deduction from B∧¬O. This technique is inverse en-
tailment that is originally proposed by Muggleton for induction in Horn theories
[19], and is later extended by Inoue to full clausal theories [13].

As H is a clausal theory, put

H = (Σ1 ← Γ1) ∧ · · · ∧ (Σk ← Γk) (8)

where Σi (i = 1, . . . , k) is a disjunction of atoms and Γi (i = 1, . . . , k) is a
conjunction of atoms. It then becomes

¬H = (¬Σ1 ∧ Γ1) ∨ · · · ∨ (¬Σk ∧ Γk). (9)

Since F is a disjunction of ground atoms, every formula ¬H ∨ F in (7) is a
disjunctive normal form. From B ∧ ¬O, a number of DNF formulas could be
deduced. Among them, we take DNF formulas obtained as follows. First, com-
pute prime CNF formulas with respect to B ∧ ¬O. A prime CNF formula is a
conjunction of prime clauses and is obtained by a system of consequence-finding.
For this purpose, SOL-resolution by Inoue [10] is used. Second, construct a DNF
formula as follows: given a prime CNF formula c1 ∧ · · · ∧ ck, produce an irre-
dundant DNF formula d1 ∨ · · · ∨ dl where di (1 ≤ i ≤ l) contains a literal from
each cj (1 ≤ j ≤ k). Then, B ∧ ¬O |= d1 ∨ · · · ∨ dl holds, and we identify the
DNF formula ¬H ∨F of (7) with d1 ∨ · · · ∨ dl. After deriving such ground DNF
formulas of the form ¬H ∨ F , the next problem is to extract ¬H from ¬H ∨ F .
This is simply done as follows. By the assumption, Σi in H is non-empty, so
that ¬H is a DNF formula in which each disjunct ¬Σi ∧ Γi of (9) contains at
least one negative literal. On the other hand, F is a disjunction of ground atoms.
Thus, from the DNF formula ¬H ∨ F , ¬H is extracted by selecting disjuncts
containing negative literals. As such, any ground DNF formula ¬H is obtained.
From this ¬H , we can obtain a clausal theory H such that B∧H has a minimal
model satisfying O (by Proposition 2.8).

Step 2: Generalization
H is a clausal theory containing no variable, so that H is generalized in the
next step. Two cases are considered: (a) O contains a single predicate, and (b)
O contains multiple different predicates. In case of (a), we apply Plotkin’s least
generalization under subsumption (LGS) [21] to H . The LGS of any finite set
of clauses exists and is computed by the LGS algorithm in [20,21]. The result
of LGS is written as lgs(H). In case of (b), let n be the number of different
predicates appearing in O. Then, O is partitioned into disjoint subsets:

O = O1 ∧ · · · ∧On (10)

where Oi (1 ≤ i ≤ n) is a conjunction of ground atoms having the same predi-
cate. Correspondingly, H is partitioned as

H = H1 ∧ · · · ∧Hn (11)
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where Hi (1 ≤ i ≤ n) is a conjunction of clauses whose heads contain the
predicate in Oi. The LGS of each Hi is then computed and collected as

lgs(H) = lgs(H1) ∧ · · · ∧ lgs(Hn) . (12)

Note that the equation (12) also represents the result of (a) when n = 1.

Step 3: Constructing a weak form of hypotheses
When an observation has some specific property, lgs(Hi) is combined into a
weaker formula.

Definition 2.2. (synchronous) Let pred(A) be the predicate of an atom A, and
const(A) the set of constants in A. Given a set S of atoms, suppose two atoms
A1 and A2 in S such that pred(A1) = p1, pred(A2) = p2, and p1 �= p2. Then, p1

and p2 are synchronous in S if const(A1)∩ const(A2) �= ∅. Otherwise, p1 and p2

are asynchronous in S. A set S is asynchronous if p1 and p2 are asynchronous
in S for any different predicates p1 and p2 in S.

An observation O is asynchronous if O is an asynchronous set. Suppose that
O is partitioned into n disjoint sets as (10) and H is partitioned as (11). In
this case, take the greatest specialization under implication (GSI) [20] of clauses
lgs(H1), . . . , lgs(Hn). The GSI of any finite set of clauses exists and is computed
by simply taking a disjunction as

gsi(lgs(H1), . . . , lgs(Hn)) = lgs(H1) ∨ · · · ∨ lgs(Hn). (13)

By lgs(Hi) |= gsi(lgs(H1), . . . , lgs(Hn)) for i = 1, . . . , n, the GSI (13) provides
a formula which is weaker than each lgs(Hi).

Step 4: Optimization
Hypotheses computed in the above two steps generally contain clauses or atoms
that are useless or have no direct connection to explaining the observation O.
To extract useful information, a method for optimization is provided.

Definition 2.3. (isolated) Let term(A) be the set of terms appearing in an
atom A. Then, two atoms A1 and A2 are linked if term(A1) ∩ term(A2) �= ∅.
Given a clause C, an atom A ∈ body(C) is isolated in C if there is no atom
A′(�= A) in C such that A′ and A are linked.

For any clause C in lgs(Hi) (1 ≤ i ≤ n),

1. remove any atom A from head(C) such that pred(A) is not included in O,
2. remove any atom A from body(C) such that A is isolated in C.

The first reduction eliminates atoms in the head which do not contribute to
the derivation of observations. The second reduction eliminates atoms in the
body which have no connection to the observation. Let lgs∗(Hi) be the result
of such reduction over lgs(Hi). When B ∧ lgs(Hi) is consistent, the reduction
is performed as far as B ∧ lgs∗(Hi) is consistent. The algorithm (called Brain)
for computing hypotheses is summarized in Figure 1.4

Now we show that Brain computes a solution for brave induction.
4

Brain is named after BRAve INduction.
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Procedure: Brain

Input : the background knowledge B and an observation O;
Output : hypotheses H∧ and H∨.

Step 1 : Compute ground and irredundant DNF formulas ¬H ∨ F from B ∧ ¬O, and
extract ¬H from ¬H ∨ F .

Step 2 : Compute lgs(H).
Step 3 : If O is asynchronous and is partitioned into O = O1 ∧ · · · ∧ On,

compute gsi(lgs(H1), . . . , lgs(Hn)).
Step 4 : If B ∧ lgs∗(Hi) is consistent, put H∧ = lgs∗(H1) ∧ · · · ∧ lgs∗(Hn) and

H∨ = lgs∗(H1) ∨ · · · ∨ lgs∗(Hn).

Fig. 1. An algorithm for brave induction

Lemma 2.9. Let B be the background knowledge and O an observation. Let H∧

be a clausal theory obtained by Brain. If B ∧H∧ is consistent, B ∧H∧ has a
minimal model satisfying O.

Proof. (i) Suppose first that O contains a single predicate. Then, for each clause
Ci = Σi ← Γi (1 ≤ i ≤ k) of (8), there is a ground substitution θi such that
lgs(H)θi ⊆ Ci for the lgs(H) of (12). Thus, lgs(H) |= H and B∧lgs(H) |= B∧H .
So lgs(H) satisfies the relation (5). By H∧ |= lgs(H), H∧ also satisfies (5).
Selecting a disjunction F of ground atoms such that B∧H∧ �|= F , H∧ satisfies the
relation (6). Hence, the result holds by Proposition 2.8. (ii) Next, suppose that
O contains multiple different predicates. Then, for each Hi of (11), lgs(Hi) |= H .
This implies lgs(H) |= H and lgs(H) satisfies the relation (5). The rest of the
proof is the same as (i). ��

Lemma 2.10. Let B be the background knowledge and O an asynchronous ob-
servation. Let H∨ be a clausal theory obtained by Brain. If B∧H∨ is consistent,
B ∧H∨ has a minimal model satisfying O.

Proof. Let O = O1∧· · ·∧On. By Lemma 2.9, B∧ lgs∗(Hi) has a minimal model
Mi satisfying Oi (1 ≤ i ≤ n). Putting M =

⋃
1≤i≤n Mi, M satisfies O. As

B∧ lgs∗(Hi) |= B∧ lgs∗(H1)∨· · ·∨ lgs∗(Hn), M is a model of B∧H∨ satisfying
O. Since the head of H∨ consists of atoms with different predicates, for any
ground instance of H∨, we can select an atom A ∈ M from the head of each
clause whenever A ∈ O. Since O is an asynchronous set, two atoms A1 and A2

with different predicates are not selected from the same ground instance of H∨.
Hence, M is a minimal model of B ∧H∨. ��

By Lemmas 2.9 and 2.10, we have the next result.

Theorem 2.11. Any hypothesis computed by Brain becomes a solution of brave
induction.
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Example 2.3. Consider the background knowledge B and the observation O:

B : teacher(0) ∧ student(1) ∧ · · · ∧ student(30),

O : euro(1) ∧ · · · ∧ euro(20) ∧ asia(21) ∧ · · · ∧ asia(27) ∧ usa(28) ∧ · · · ∧ usa(30).

Brain computes candidate hypotheses as follows. First, B∧¬O entails the prime
CNF formula B ∧ ¬O. From this, the ground and irredundant DNF formula
¬H1 ∨ ¬H2 ∨ ¬H3 is obtained where

H1 = (¬B ∨ euro(1)) ∧ · · · ∧ (¬B ∨ euro(20)),
H2 = (¬B ∨ asia(21)) ∧ · · · ∧ (¬B ∨ asia(27)),
H3 = (¬B ∨ usa(28)) ∧ · · · ∧ (¬B ∨ usa(30)).

The LGS of each Hi becomes

lgs(H1) = ¬teacher(0) ∨ ¬student(x) ∨ euro(x),
lgs(H2) = ¬teacher(0) ∨ ¬student(y) ∨ asia(y),
lgs(H3) = ¬teacher(0) ∨ ¬student(z) ∨ usa(z).

Then, lgs(H) = lgs(H1) ∧ lgs(H2) ∧ lgs(H3). On the other hand, as O is
asynchronous, the greatest specialization becomes gsi(lgs(H1), . . . , lgs(Hn)) =
lgs(H1) ∨ lgs(H2) ∨ lgs(H3).

Finally, the atom teacher(0) is isolated in each lgs(Hi) (i = 1, 2, 3), so that it
is remove from the body of each clause. As a result, H∧ becomes

(euro(x)← student(x)) ∧ (asia(x)← student(x)) ∧ (usa(x)← student(x)),

and H∨ becomes

euro(x) ∨ asia(x) ∨ usa(x)← student(x).

Thus, H∧ and H∨ become two solutions of brave induction.

In Example 2.3, H∧ also becomes a solution of cautious induction, but H∨ is a
solution inherent to brave induction.

3 Brave Induction in Nonmonotonic Logic Programming

As presented in Section 2, brave induction is useful for learning theories with
indefinite or incomplete information. Incomplete information is also represented
as default rule in logic programming. In this section, we consider brave induction
in nonmonotonic logic programs.

3.1 Answer Set Programming

Answer set programming (ASP) [16] represents incomplete knowledge in a logic
program and realizes nonmonotonic default reasoning. In ASP a logic program
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is described by an extended disjunctive program (EDP). An EDP (or simply a
program) is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln

(n ≥ m ≥ l ≥ 0) where each Li is a positive/negative literal, i.e., A or ¬A
for an atom A. not represents default negation or negation as failure (NAF).
not L is called an NAF-literal. Literals and NAF-literals are called LP-literals.
The symbol “;” represents disjunction and “,” represents conjunction. The above
rule is read “If all Ll+1, . . . , Lm are believed and all Lm+1, . . . , Ln are disbelieved,
then some of L1, . . . , Ll is believed”. The left-hand side of the rule is the head ,
and the right-hand side is the body. For each rule r of the above form, head(r),
body+(r) and body−(r) denote the sets of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
and {Lm+1, . . . , Ln}, respectively. Also, not body−(r) denotes the set of NAF-
literals {not Lm+1, . . . , not Ln}. A disjunction of literals and a conjunction of
(NAF-)literals in a rule are identified with its corresponding sets of literals. A rule
r is often written as head(r) ← body+(r), not body−(r) or head(r) ← body(r)
where body(r) = body+(r) ∪ not body−(r). A rule r is disjunctive if head(r)
contains more than one literal. A rule r is a constraint if head(r) = ∅; and r is
a fact if body(r) = ∅. A program is NAF-free if no rule contains NAF-literals.
A program, rule, or literal is ground if it contains no variable. A program P
with variables is a shorthand of its ground instantiation Ground(P ), the set of
ground rules obtained from P by substituting variables in P by elements of its
Herbrand universe in every possible way. Two literals L1 and L2 have the same
sign if both L1 and L2 are positive literals (or negative literals). A set S of
ground literal is consistent if L ∈ S implies ¬L �∈ S for any literal L; otherwise,
S is inconsistent. Let L0 be a ground literal and S a set of ground literals. Then,
L1 ∈ S is relevant to L0 if either (i) const(L0) ∩ const(L1) �= ∅, or (ii) for some
literal L2 ∈ S, const(L1) ∩ const(L2) �= ∅ and L2 is relevant to L0. Otherwise,
L1 ∈ S is irrelevant to L0.

The semantics of an EDP is defined by the answer set semantics. Let Lit be
the set of all ground literals in the language of a program. Suppose a program
P and a set of literals S(⊆ Lit). Then, the reduct PS is the program which
contains the ground rule head(r)← body+(r) iff there is a rule r in Ground(P )
such that body−(r)∩S = ∅. Given an NAF-free EDP P , let S be a set of ground
literals that is (i) closed under P , i.e., for every ground rule r in Ground(P ),
body(r) ⊆ S implies head(r) ∩ S �= ∅; and (ii) logically closed, i.e., it is either
consistent or equal to Lit. Given an EDP P and a set S of literals, S is an answer
set of P if S is an answer set of PS . A program has none, one, or multiple answer
sets in general. The set of all answer sets of P is written as AS(P ). An answer
set is consistent if it is not Lit. A program P is consistent if it has a consistent
answer set; otherwise, P is inconsistent.

Example 3.1. The program:

tea ; coffee ←,

milk← tea, not lemon,
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lemon← tea, not milk,

milk← coffee

has the three answer sets: S1 = { tea, milk }, S2 = { tea, lemon }, and S3 =
{ coffee, milk }, which represent possible options for drink.

3.2 Brave Induction in ASP

In this section, we consider the following problem setting:

– the background knowledge B is given as a consistent EDP,
– an observation O is given as a consistent set of ground literals,
– a hypothesis H is a consistent set of rules.

Then, brave induction in ASP is defined as follows.

Definition 3.1. (brave induction in ASP) Let B be the background knowledge
and O an observation. A hypothesis H covers O under B in brave induction if
B ∪H has a consistent answer set S such that O ⊆ S.5

Cautious induction, by contrast, requests that O ⊆ S holds for every consistent
answer set S of B ∪H . Brave induction in ASP has properties similar to those
of clausal theories. As the case of clausal theories, the problem of our interest is
the case when B has no answer set including O.

In case of brave induction from clausal theories, inverse entailment is used for
computing hypotheses. However, it is known that inverse entailment in classi-
cal logic is not applied to nonmonotonic logic programs [23]. We then consider
another method for computing possible hypotheses.

Step 1: Computing ground hypotheses
Given an observation O, let Θ = {L | L ∈ Lit and pred(L) appears in O }.
Suppose that the background knowledge B has an answer set S. Then, construct
a finite and consistent set R of ground rules satisfying the following conditions.
For any rule r ∈ R,

1. head(r) = {L} for any L ∈ O,
2. body+(r) = {L | L ∈ S and L is relevant to the literal in head(r) }.
3. body−(r) = {L | L ∈ Lit\(S∪Θ) and L is relevant to the literal in head(r)

and appears in Ground(P ) }.

The third condition requires that no rule contains default negation of literals in
S∪Θ. The reason is that if body−(r) contains literals from S, body(r) may contain
both L in body+(r) and not L in body−(r), which makes the rule meaningless.
Also, if body−(r) contains literals from Θ, r may contain a negative loop that

5 In nonmonotonic logic programming, logical connectives in classical logic are not
used. So we write B ∪ H instead of B ∧ H .
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would make a program inconsistent. By its construction, different hypotheses
are constructed by different answer sets in general.

Step 2: Generalization
The notion of LGS is extended to rules containing default negation. It is done
by syntactically viewing rules as “clauses”. That is, identify disjunction “;” with
the classical one “∨, and any NAF-literal “not p(t1, . . . , tn)” with a new atom
“not p(t1, . . . , tn)” with the predicate “not p”. ¬p is also considered a predicate
“¬ p” and is considered a predicate different from p. With this setting, the
LGS of a finite set of rules is defined in the same manner as the one in clausal
theories [24]. The generalization phase is similar to the case of clausal theories.
If O contains a single predicate, compute lgs(R). Else if O contains multiple
different predicates, O is partitioned into disjoint subsets O = O1 ∪ · · · ∪ On

where Oi (1 ≤ i ≤ n) is a set of ground literals having the same predicate.
Correspondingly, R is partitioned as R = R1 ∪ · · · ∪Rn where Ri (1 ≤ i ≤ n) is
a set of ground rules whose heads have the predicate in Oi. The LGS of each Ri

is then computed and collected as lgs(R) = lgs(R1) ∪ · · · ∪ lgs(Rn).

Step 3: Constructing a weak form of hypotheses
The GSI of two rules Head1 ← Body1 and Head2 ← Body2 is also defined
as Head1 ; Head2 ← Body1, Body2, by taking the disjunction/conjunction of
two heads/bodies. When an observation O is an asynchronous set, the GSI of
lgs(R1), . . . , lgs(Rn) is constructed as

gsi(lgs(R1), . . . , lgs(Rn))
= head(lgs(R1)) ; · · · ; head(lgs(Rn))← body(lgs(R1)), . . . , body(lgs(Rn)) .

Step 4: Optimization
The notion of “isolated literal” in a rule is defined by replacing a clause with
a rule, and an atom with a literal in Definition 2.3. Then, for any rule r in
lgs(Ri) (1 ≤ i ≤ n), remove any literal L from body(r) such that L is isolated in
r. Let lgs∗(Ri) be the result of such reduction over lgs(Ri). When B ∪ lgs(Ri)
is consistent, the reduction is performed as far as B ∪ lgs∗(Ri) is consistent.

The algorithm of brave induction in ASP (called Brain
not) is sketched in

Figure 2. In what follows, we show that Brain
not computes hypotheses for

brave induction in ASP. We say that O is independent of B if every predicate in
O appears nowhere in B.

Proposition 3.1. Let P be a consistent program. Suppose a consistent set R of
rules such that for any r ∈ R, every predicate in head(r) appears nowhere in P .
Then, P ∪R is consistent.

Lemma 3.2. Let B be the background knowledge and O an observation. Let H∧

be a set of rules obtained by Brain
not. If O is independent of B, B ∪H∧ has

an answer set U such that O ⊆ U .

Proof. Let S be an answer set of B. For any rule r in R, head(r) ← body+(r)
is in RS . Here, body+(r) ⊆ S, head(r) = {L}, and pred(L) appears nowhere in
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Procedure: Brain
not

Input : the background knowledge B and an observation O;
Output : hypotheses H∧ and H∨.

Step 1 : Select an answer set S of B and construct a set R of rules.
Step 2 : Compute lgs(R).
Step 3 : If O is asynchronous and is partitioned into O = O1 ∪ · · · ∪ On,

compute gsi(lgs(R1), . . . , lgs(Rn)).
Step 4 : If B ∪ lgs∗(Ri) is consistent, put H∧ = lgs∗(R1) ∪ · · · ∪ lgs∗(Rn) and H∨ =

{ head(lgs∗(R1)) ; · · · ; head(lgs∗(Rn)) ← body(lgs∗(R1)), . . . , body(lgs∗(Rn)) }.

Fig. 2. An algorithm for brave induction in ASP

B. Put T = S ∪ {L | L ∈ head(r) and r ∈ RS }. By BT ∪ RT = BS ∪ RT , T
becomes a minimal closed set of BT ∪RT = (B ∪ R)T . Since O is independent
of B, every predicate in head(r) appears nowhere in P and B ∪R is consistent
(Proposition 3.1). As R contains rules having every literal in O, T is a consistent
answer set of B ∪ R such that O ⊆ T . Next, we show that B ∪ lgs(R) has
an answer set such that O ⊆ U . Let R = R1 ∪ · · · ∪ Rn. By the definition,
lgs(Ri)θ ⊆ r for any r ∈ Ri (1 ≤ i ≤ n) with some ground substitution θ.
Then, for any rule r ∈ Ri, body−(r) ∩ S = ∅ implies body−(lgs(Ri)θ) ∩ S = ∅.
So BS ∪ RS ⊆ BS ∪ lgs(R)S. Since O is independent of B, lgs(R)S \ RS is
a set of NAF-free rules whose heads have predicates appearing nowhere in B.
Put V = {L | r ∈ lgs(R)S \ RS , head(r) = {L} and body+(r) ⊆ S }. Then,
BS∪V ∪ lgs(R)S∪V = BS ∪ lgs(R)S has a minimal closed set U = S ∪ V . Since
O is independent of B, BS ∪ lgs(R)S is consistent (Proposition 3.1). As lgs(R)
contains rules having every literal in O, U is a consistent answer set of B∪lgs(R)
such that O ⊆ U . When B ∪ lgs∗(Ri) is consistent, U also becomes a consistent
answer set of B ∪H∧. Hence, the result follows. ��

Lemma 3.3. Let B be the background knowledge and O = O1 ∪ · · · ∪ On an
asynchronous observation. Let H∨ be a set of rules obtained by Brain

not. If O
is independent of B, B ∪H∨ has an answer set U such that O ⊆ U .

Proof. Let r = gsi(lgs(R1), . . . , lgs(Rn)). For some answer set S of B,
body+(rθ) ⊆ S and body−(rθ) ⊆ Lit \ (S ∪ Θ) hold for any ground instance rθ
of r. Since head(r) consists of literals with different predicates, for any ground
instance of rθ, a set T of literals is constructed in a way that a literal L ∈ T is
selected from the head of each rθ whenever L ∈ O. Since O is an asynchronous
set, two literals L1 and L2 with different predicates are not selected from the
same ground instance of gsi(lgs(R1), . . . , lgs(Rn)). In this way, we can construct
a minimal closed set U = S ∪ T of BU ∪ {r}U . Since O is independent of B,
BU ∪{r}U is consistent (Proposition 3.1). Then, U becomes a consistent answer
set of B ∪ { gsi(lgs(R1), . . . , lgs(Rn)) } and O ⊆ U . When B ∪ lgs∗(Ri) is con-
sistent, U also becomes a consistent answer set of B ∪H∨. ��
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By Lemmas 3.2 and 3.3, we have the next result.

Theorem 3.4. Any hypothesis computed by Brain
not becomes a solution of

brave induction.

Example 3.2. There are two couples, Adam and Nancy, and Bob and Jane. They
plan to go to either sea or mountain on this weekend. Each couple can select
one of them, but a husband and a wife go to the same place. The situation is
represented as the background knowledge B:

s(x)← not m(x),
m(x)← not s(x),
c(a, n)←, c(b, j)←,

← c(x, y), s(x), m(y),
← c(x, y), s(y), m(x)

where the predicates s, m and c mean sea, mountain and couple, respectively,
and the constants a, n, b and j mean Adam, Nancy, Bob and Jane, respec-
tively. B has four answer sets: S1 = { c(a, n), c(b, j), s(a), s(n), s(b), s(j) },
S2 = { c(a, n), c(b, j), s(a), s(n), m(b), m(j) }, S3 = { c(a, n), c(b, j), m(a),
m(n), s(b), s(j) }, and S4 = { c(a, n), c(b, j), m(a), m(n), m(b), m(j) }.

Suppose the observation that Adam and Nancy are tanned, but Bob and Jane
are not. It is represented as:

O = { t(a), t(n), ¬t(b), ¬t(j) }

where the predicate t mean tanned.
Brain

not constructs candidate hypotheses as follows. First, an answer set of
B, for instance S2, is selected. A set R of rules is then constructed as:

t(a)← c(a, n), s(a), s(n), not m(a), not m(n),
t(n)← c(a, n), s(a), s(n), not m(a), not m(n),
¬t(b)← c(b, j), m(b), m(j), not s(b), not s(j),
¬t(j)← c(b, j), m(b), m(j), not s(b), not s(j).

Next, the lgs(R) is constructed as

t(x)← c(a, n), s(x), not m(x),
¬t(y)← c(b, j), m(y), not s(y).

Since O is an asynchronous set, gsi(lgs(R1), . . . , lgs(Rn)) is also constructed as

t(x) ; ¬ t(y)← c(a, n), c(b, j), s(x), m(y), not m(x), not s(y).

Finally, isolated literals c(a, n) and c(b, j) are removed, and H∧ and H∨ become
H∧ = { t(x)← s(x), not m(x), ¬t(y)← m(y), not s(y) } and
H∨ = { t(x) ; ¬ t(y)← s(x), m(y), not m(x), not s(y) }, respectively.
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4 Discussion

There are some induction frameworks which relax explanatory induction in dif-
ferent ways. De Raedt and Dehaspe [3,4] introduce the framework of learning
from satisfiability (LFS). Given the background knowledge B and an observation
O, a hypothesis H covers O under B in LFS if B ∧H ∧O is consistent. In other
words, H covers O under B in LFS if B ∧H has a model satisfying O. By the
definition, LFS is weaker than brave induction. That is, if a hypothesis H covers
O under B in brave induction, H covers O under B in LFS (cf. Proposition 2.3).
The converse implication does not hold in general. Compared with brave induc-
tion, LFS does not require the minimality of models. So any theory H becomes
a solution as far as it is consistent with B ∧ O. This implies that any hypoth-
esis which has no connection to B ∧ O may become a solution. For instance,
let B = { p(a) } and O = { q(a) }. Then, H1 = { r(b) }, H2 = { s(x) ← r(x) },
H3 = {¬ s(c) }, . . . are all solutions in LFS. Note that none of H1, H2, and H3

becomes a solution of brave induction. As seen in the above example, LFS ap-
pears too weak for building useful hypotheses. Since it generally produces tons of
useless hypotheses, additional conditions must be introduced to reduce the hy-
potheses space for practical usage. Brave induction is considered as a restricted
version of LFS, that is, we imposed the condition of minimality on models of
B ∧H satisfying O. Moreover, in [3] the authors say:

One open question for further research is how learning from satisfiability
(which employs a monotonic logic) could be used for inducing nonmono-
tonic logic programs.

This paper provides a solution in the context of brave induction.
Confirmatory induction or descriptive induction [15] provides a different

method for induction. Given the background knowledge B and an observation
O such that B ∧ O is consistent, a hypothesis H covers E under B in confir-
matory induction if Comp(B ∧ O) |= H where Comp represents Clark’s predi-
cate completion. When B is a set of definite clauses, any hypothesis H induced
in explanatory induction and the closed world assumption becomes a solution
of confirmatory induction [1]. For instance, given B = { human(Socrates) }
and O = {mortal(Socrates) }, both H1 = (mortal(x) ← human(x)) and
H2 = (human(x) ← mortal(x)) become solutions of confirmatory induction,
but only H1 is the solution of explanatory induction and brave induction. On the
other hand, explanatory induction and brave induction are not always stronger
than confirmatory induction. For instance, let B = { p(x)← q(x) } and O = p(a).
Then, H = q(a) ∧ q(b) becomes a solution of explanatory induction and brave
induction, while H is not a solution of confirmatory induction. Thus, there is no
relation between brave induction and confirmatory induction in general. Gener-
ally speaking, confirmatory induction does not explain why particular individuals
are observed under the background knowledge, and the aim is to learn relation-
ships between any of the concepts [8]. For induction in full clausal theories, Inoue
[13] introduces CF-induction which extends Muggleton’s inverse entailment to
full clausal theories. However, CF-induction is cautious induction and is often



276 C. Sakama and K. Inoue

too strong for learning indefinite theories. Induction in answer set programming
is introduced by Sakama [25], but it is also cautious induction.

Brave induction guarantees the existence of a minimal model of B∧H in which
an observation O is satisfied. In this case, H covers the positive observation O
under B. In ILP, on the other hand, negative observations as well as positive
ones are also handled. Given a negative observation N , it is required that H
uncovers N under B. This condition is logically represented as B ∧ H �|= N .
Definition 2.1 is extended to handle negative observations as follows.

Definition 4.1. Let B be the background knowledge, P a positive observation,
and N a negative observation. A hypothesis H is a solution of brave induction
if B ∧H has a minimal model M such that M |= P and M �|= N .

By putting O = P ∧ ¬N , the above definition reduces to Definition 2.1 and
negative observations are handled within the framework of this paper.6

In this paper, we introduced induction algorithms which produce clauses or
rules that define more than one predicate. The problem is known as multiple
predicate learning (MPL) [2]. In MPL the order of learning different clauses
affects the results of the learning tasks and even the existence of solutions, es-
pecially in the presence of negative observations [1]. We do not discuss details
of the problem in this paper, and just impose the condition of consistency on
B ∧ lgs∗(Hi) in the first-order case. In case of ASP, independence of O with re-
spect to B guarantees the consistency of B∪{ lgs∗(R) } as far as B is consistent.
Further discussion for MPL is left for future study.

We finally remark the computational complexity issue. First, in case of clausal
theories (CT), brave induction has a solution H iff B ∧O is consistent (Propo-
sition 2.1). Then, given a ground clausal theory B and a ground observation
O, deciding the existence of solutions in brave induction is NP-complete. In
case of ASP, brave induction has a solution H if B ∪ O has a consistent an-
swer set. The decision problem is ΣP

2 -complete [6]. Next, we consider the task
of identifying whether a theory H is a solution of brave induction. To this end,
we consider a complementary problem: a ground clausal theory B ∧H has no
minimal model satisfying a conjunction O of ground atoms. This is a task of
the extended GCWA and is known ΠP

2 -complete [6], so that the identification
problem is ΣP

2 -complete. Deciding whether the ground program B ∪ H has a
consistent answer set satisfying O is also ΣP

2 -complete [6]. On the other hand,
in cautious induction, the decision problem for the existence of solutions has the
same complexity in both CT and ASP. The decision problem for the identifica-
tion of solutions is coNP-complete in CT, and ΠP

2 -complete in ASP. Comparing
those results, brave induction appears more expensive than cautious induction
for identifying solutions in CT.

Brave and cautious inferences are widely used for commonsense reasoning
from incomplete knowledge. In hypothetical reasoning, two different types of
abduction under brave and cautious inferences are introduced by [7,11] under
6 Strictly speaking, ¬N requires Skolemization when a clausal theory N contains vari-

ables. For detailed technique, see [13].
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the stable model semantics of logic programs. To the best of our knowledge,
however, no studies introduce brave induction as a form of learning or learning
from incomplete information. Since abduction and induction are both hypothet-
ical reasoning which extend the background knowledge to explain observations,
brave induction proposed in this paper has a right place and serves as a natural
extension of brave abduction.

5 Conclusion

This paper introduced the framework of brave induction which is weaker than
explanatory induction usually used in ILP. We developed an algorithm for com-
puting brave induction in full clausal theories, and also extended the framework
to induction in answer set programming. As argued in the paper, explanatory
induction is often too strong for learning indefinite or incomplete theories. Learn-
ing from satisfiability, on the other hand, appears too weak as presented in Sec-
tion 4. Brave induction has a position between learning from satisfiability and
explanatory induction, and provides a moderate solution in the middle.

We are now seeking practical applications of brave induction. One of the can-
didates is systems biology which would have indefinite or incomplete information
in the background knowledge and observations. A recent study [5] shows that an
ILP approach is useful for finding causal relations between concentration changes
of metabolities and enzyme activities. In [5] CF-induction [13] is used for learn-
ing hypotheses. Since CF-induction is cautious induction, there would be a room
for brave induction to find new hidden hypotheses. A theoretical extension to
circumscriptive induction [14] is also a topic for future research.
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Abstract. Knowledge bases play an important role in many forms of ar-
tificial intelligence research. A simple approach to producing such knowl-
edge is as a database of ground literals. However, this method is neither
compact nor computationally tractable for learning or performance sys-
tems to use. In this paper, we present a statistical method for incremental
learning of a hierarchically structured, first-order knowledge base. Our
approach uses both rules and ground facts to construct succinct rules
that generalize the ground literals. We demonstrate that our approach is
computationally efficient and scales well to domains with many relations.

1 Introduction

Artificial intelligence researchers have long used first-order knowledge bases,
which are collections of rules and facts, to support their systems and technology.
Some systems use them as background to support decision making, while others
perform theory revision on the knowledge base itself in an attempt to improve
rule coverage. In this paper, we consider the problem of inducing a hierarchically
structured, first-order knowledge base from a sequence of ground literals.

ILP systems are often characterized along four dimensions [1]: 1) batch versus
incremental input, 2) interactive versus non-interactive learners, 3) theory revi-
sion versus rule induction systems, and 4) single versus multiple concept learners.
Although these factors are largely independent, most ILP systems fall into one
of two categories [2]. The first, known as empirical systems, are batch input,
non-interactive, single concept learners that build their own concept definitions.
The second category, known as interactive systems, take incremental input and
user interaction to revise multiple concepts in existing theories.

In this paper we present scale, an incremental, non-interactive system that
constructs new definitions for multiple concepts. This combination allows scale

to operate in online environments. For example, suppose a robot explores its
environment in an effort to induce rules that govern the relationships among
perceived objects. Such a robot may perceive examples of many relationships
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(concepts) over time, but lack the ability to seek out specific examples or re-
quest counter-examples to induced rules. Scale would let the robot construct
an intensional knowledge base to describe its environment. The robot can then
apply this knowledge to infer relationships among previously unseen object, and
use the results to determine which actions to take next.

2 Problem Formulation and Knowledge Representation

We formulate the knowledge base induction problem as follows. The system
receives background knowledge in the form of many extensionally defined con-
cepts given as ground literals, or their negations. The system may also receive
intensionally defined concepts. The learning task is to construct an intensional
definition for each extensionally defined concept that entails all of the positive
ground literals and none of the negative literals.

Specifically, scale learns universally quantified definitions of the form

p(X, Y, Z) θ← q1(X, Y ), q2(Y, Z), . . . , qn(X, Z)

where each qi has an associated weight wi and θ← denotes threshold-implication.
Threshold-implication defines the consequent to be true if the linear threshold
relation

∑n
i=1 wiqi ≥ θ is satisfied, where qi = 1 if qi(. . .) evaluates to true, and

qi = −1 otherwise. Thus, the classification function implemented by threshold-
implication is equivalent to that of the perceptron [3], which is the simplest type
of feedforward neural network. This work therefore claims both a connectionist
and an inductive logic programming heritage.

Consider the following illustration of threshold-implication. Suppose we have
the chess rule shown on line 1 of Table 1 for determining whether a move from one
cell to another constitutes a legal move for a knight. Line 2 shows the expansion
of this rule into a standard implication rule. Recall that predicate groundings
that evaluate to true take the numeric value +1, while those that evaluate to
false take the numeric value −1. If we bind X ≡ BN− B7 (black knight at B7)
and Y ≡ E − C5 (empty cell at C5), then we get that knight(BN− B7) ≡ +1,
Lshape(BN− B7, E− C5) ≡ +1, and canOccupy(BN− B7, E− C5) ≡ +1. As-
suming that w1 = w2 = w3 = 1 and θ = 3, we can conclude that knight-
Move(BN-B7, E-C5) ≡ +1 as shown on lines 3 and 4 of Table 1.

Notice that the definitions learned by scale can represent more complex re-
lationships than horn clauses. Threshold-implication can represent in a single

Table 1. Illustration of a threshold-implication rule evaluation

1 knightMove(X, Y )
θ← knight(X),Lshape(X, Y ), canOccupy(X, Y )

2 knightMove(X, Y ) ← (w1knight(X) + w2Lshape(X, Y ) + w3canOccupy(X, Y ) ≥ θ)

3 knightMove(BN − B7, E − C5) ← (1 · 1 + 1 · 1 + 1 · 1 ≥ 3)

4 knightMove(BN − B7, E − C5) ← true ≡ +1
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clause any set of n-dimensional positive and negative ground literals that are
separable by an (n − 1)-dimensional hyperplane, where n indicates the number
of antecedents as above. Literals with this property are often called linearly sep-
arable in the connectionist literature. This includes conjunctions, disjunctions,
and other many simple functions such as q1 ∧ (q2 ∨ q3).

Learned predicate definitions may use any intensionally defined predicates or
ground facts (predicates for which no definition will be learned) from background
knowledge as an antecedent, including predicates for which a definition was
previously learned. Thus, the knowledge base is constructed in a bottom-up
manner. Predicates for which no definition has yet been learned are not eligible
to act as antecedents. As a result, Scale does not currently learn recursive rules.
This is not a fundamental limitation of the algorithm, however, and we revisit
the topic in our discussion of future work.

Scale’s underlying numeric representation also provides a natural way to
deal with numeric data. Combining constants that represent numbers or vectors
with threshold-implication lets rules use constants as antecedents. Here, each
constant or vector entry receives its own weight. Then, threshold-implication
uses the numbers represented by the constant during evaluation in place of the
usual ±1 values provided by predicate antecedents.

For example, in the chess experiments reported later, each constant represents a
cell on the board using three integers. The first represents the piece occupying the
cell with a range of 0–12, such that the cell may be empty (0), contain a white king
(1), a black queen (8), and so on. The second and third integers have range 0–7 and
represent the rank (row) and file (column) of the cell. Thus, the constant WK-A8
(white queen atA8) represents the vector <2, 0, 7>.Scale can then represent rules
such as blackPiece(X) θ← X , which expands to blackPiece(X)← (w1X1 +w2X2+
w3X3 ≥ θ), where Xi represents the ith value of the vector bound to variable X .
Setting w1 = 1, w2 = 0, w3 = 0, and θ = 7 then yields the desired rule.

3 Incremental Knowledge Base Induction

Scale relies on two key ideas to induce threshold-implication rules from a data-
base of ground literals. First is that a continuous search space simplifies the first-
order incremental rule induction problem. Scale’s numeric representation lets
the system make smaller changes for each observed ground literal than possible
with a strictly logical representation. The second key idea is that the knowledge
base must be organized with respect to the concept learning tasks. Hierarchi-
cal rule organization helps to reduce the learning complexity by reducing the
number of candidate antecedents evaluated by the concept learning algorithm,
resulting in a smaller search. Learning in scale may therefore be viewed as an
incremental, bottom-up refinement of representation.

We begin our presentation of scale by formalizing the algorithmic data struc-
tures used to represent predicates, candidate hypotheses, and ground literals. We
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Table 2. Symbols used in describing the scale algorithm

P = (p, Vp, Cp, Ip , wp, θ) be a rule such that
• p is the consequent of P
• Vp is the set of arguments for p,
• Cp is the set of candidate antecedents,
• Ip is the vector of selected predicate antecedents,
• wp is the weight vector, and
• θ is the threshold value.

X = (p,B, d) be a ground literal such that
• p identifies the predicate (same as rule consequent),
• B is a set of bindings of Vp constants, and
• d is the Boolean value of p given B (-1 if negated literal, 1 otherwise).

then provide an overview of the main algorithm in terms of its four primary
components. Finally, we consider the details of each component, and illustrate
them with examples.

3.1 The SCALE Algorithm

Scale acquires each predicate definition through a combination of four com-
ponent methods. Each component makes incremental revisions to the predicate
definition at different levels of resolution. We begin our description by defin-
ing several symbols, shown in Table 2, used throughout the following discus-
sion. These symbols identify specific implementational aspects of predicates and
ground literals used by the algorithm, as shown in Table 3.

The first component acts at the broadest level, performing bottom-up eval-
uation (line 8) over all intensionally defined predicates in the knowledge base
with respect to the constants bound in the current ground literal. The results
are then used to update relevance scores (line 9) of each background predicate
to the predicate that is currently being learned.

The second component selects candidate antecedents based on their relevance
results. Candidate selection (line 15) determines both which predicates should
serve as antecedents in a rule, and how the arguments of the antecedents should
be bound to the arguments of the consequent.

The third component performs weight learning (line 10) to determine the
specific rule that relates the antecedents to the consequent based on the observed
ground literals. Also included with weight learning is the problem of determining
if and when the current rule requires new antecedents. Until a rule is deemed
sufficiently accurate, the first three components operate together on each ground
literal (although new antecedents are selected only occasionally).

After a rule becomes sufficiently accurate, the final component begins working
to fine tune the learned rule (line 17). The goal here is to remove any irrelevant or
redundant antecedents. This helps to simplify the rule definition, to improve rule
accuracy, and to improve the efficiency of the knowledge base. In the remainder
of this section, we examine each component in detail.
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Table 3. The scale algorithm

Given:
Stream of ground literals X
Set of background predicate definitions P

Algorithm: scale(P , X )
1 U ← ∅
2 for each Xt = (pt, Bt, dt) ∈ X do
3 P ← find pt in P + U
4 if pt �∈ P + U then // start a new rule
5 P ← new rule with consequent pt, variables from Bt, and C = I = w = ∅
6 U ← U + {P}
7 if P ∈ U then // still learning rule
8 E ← evaluate-bottom-up(P, Xt)
9 update-relevance(E , P, Xt)
10 update-weights(P, dt)
11 if P is learned then
12 U ← U − {P}
13 P ← P + {P}
14 if P is unlearnable then
15 select-new-candidate(P )
16 if P ∈ P then // rule learned, now fine tune
17 remove-irrelevant-antecedants(P, Xt)
18 end for each
19 return P

3.2 Bottom-Up Evaluation

The goal of bottom-up evaluation is to evaluate all possible bindings of the
background predicates P with respect to a small set of constants. Here, the
constants are those bound by Bt in the current ground literal, Xt. In this case,
scale’s numerical representation and hierarchically structured rule allow us to
augment typical bottom-up evaluation algorithms to achieve greater efficiency.

The approach begins with a closed world assumption, meaning that any
predicate-binding combination not proved true by our procedure is assumed
false. This allows the procedure to avoid evaluating explicitly any consequent
for which no antecedent can be found to support the implication. For example,
at least one term in a conjunctive rule must evaluate to true before the system
attempts to evaluate the entire rule. This idea is similar to that of spreading
activation [4], which propagates signals along active paths only.

We begin describing the algorithm by defining two terms. First, let G be the set
of low-level (ground) rules in P . These are rules which rely only on ground facts
or constants as antecedents. Second, we define the term improve with respect
to predicate evaluation. The truth value of a bound predicate P improves the
evaluation of P ′ if P ∈ IP ′ and the output value of P constitutes evidence that
P ′ will output true. With respect to the numerical representation underlying
each predicate, P improves P ′ if the weighted evaluation of P is greater than
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Table 4. Bottom-up knowledge base evaluation algorithm

Given:
Set P of background predicates
Example X = (p, d, B)

Algorithm: bottom-up(P , X) // main loop
1 E ← ∅
2 G ← set of ground predicates in P
3 for each P ∈ G do
4 B ← set of all bindings between B and Vp

5 for each B′ ∈ B do
6 E ← E + bu-evaluator(P, B, B′)
7 return E

Algorithm: bu-evaluator(P, B, B∗) //recursive procedure
8 B ← set of bindings between B and Vp given B∗

9 E ′ ← ∅
10 for each B′ ∈ B do
11 bind B′ to Vp and evaluate P
12 E ′ ← E ′ + {P}
13 for each P ′such thatP ∈ IP ′ do
14 if P improves P ′ then
15 B′′ ← binding from P to P ′

16 E ′ ← E ′ + bu-evaluator(P ′, B, B′′)
17 return E ′

zero. This brings the left side of the threshold-implication rule (
∑n−1

j=0 wjij ≥ θ)
closer to or beyond θ, which suggests that further computation is justified.

Table 4 shows the bottom-up evaluation algorithm, which collects the set of
explicitly evaluated predicates (both true and false) into the set E . The main loop
(lines 1–7) iterates over the set G of ground predicates. Each predicate P ∈ G is
evaluated with respect to all possible bindings between the constants B bound
in the ground literal X , and VP . If the evaluation improves any of P ’s successors,
then the algorithm recurses and evaluates those successors. The bindings of P are
mapped to its successor P ′. If P ′ has more arguments than P , then the extra
arguments are bound to objects in B before bottom-up evaluation continues
(line 8). While not shown here, pilot experiments suggest that this bottom-up
evaluation procedure reduces the number of rule evaluations substantially [5].
Further research on this topic to determine efficiency and prove completeness is
required.

3.3 Selecting Rule Antecedents

We now turn to the problem of selecting which antecedents will form the basis
for a predicate. This is a central problem in scale. An efficient selection algo-
rithm may allow the system to learn new rules almost indefinitely. Otherwise,
the system will become overwhelmed by the number of possibilities. Scale’s
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approach is to select a set of related antecedents for each predicate, not a mini-
mal set. This allows useful redundancy and more flexibility in learning predicate
definitions.

Having established the set E of background predicates explicitly evaluated via
the bottom-up procedure, we now turn to the task of selecting specific antecedents
for a given predicate. Our approach relies on the simplicity of threshold-
implication, here implemented as a perceptron. More powerful connectionist al-
gorithms can detect and represent subtle relationships between antecedents and
consequent, but this makes predicting the usefulness of a given antecedent diffi-
cult. Threshold-implication can represent only simple relationships, so predicting
which antecedents may be useful is relatively simple.

There are only two basic types of inputs to a perceptron. Both cases can
be coarsely detected without training the perceptron. Excitatory inputs indi-
cate when the perceptron should produce a positive output (bound predicate is
true). To detect an excitatory input, scale computes the conditional probabil-
ity s+ = Pr[Pout = true|Pin = true, Data] that the consequent is true given that
the candidate antecedent is true. Probabilities closer to one indicate a stronger
relationship (more overlap) between Pin and Pout.

Inhibitory inputs indicate when the perceptron should produce a negative out-
put (bound predicate is false). Detecting inhibitory inputs is similar to detecting
excitatory inputs. Scale computes the conditional probability s− = Pr[Pout =
true|Pin = false , Data] that the consequent is true given that the candidate an-
tecedent is false. Note that while both measures produce values in the range zero
to one, they are not complementary.

Antecedent selection now proceeds based on these detection measures. First,
note that candidate antecedents are not yet linked as actual dependencies, and
therefore have no entry in the predicate’s weight vector. Now, for a given ground
literal, the learned predicates are first evaluated bottom-up. In the remaining
steps, only predicates explicitly evaluated by the bottom-up procedure are con-
sidered. The excitatory and inhibitory scores are computed over several training
instances. Candidate antecedents with the highest score are then added as new
antecedents to Pout when the weight learning component determines that a new
antecedent is needed.

3.4 Weight Learning

Weight learning in scale addresses three problems. The first is to determine the
relationship between the antecedents and the consequent to a rule. This is the
process of learning the specific weight and threshold values used by threshold-
implication. All updates are made incrementally, with each observed ground
literal.

The weight vector w for a predicate P is initialized with small random val-
ues. Then, for each literal associated with P , the weights get updated via the
perceptron rule [3]. Specifically,

w′
i = wi + α(d− p(· · ·))qi(· · ·) ,
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where d is the value associated with the literal (−1 if negated, +1 otherwise),
p(· · ·) is the outcome of threshold-implication given the current weight vector,
qi(· · ·) is the value of antecedent i, and 0 < α ≤ 1 governs the magnitude of
each update. A similar update also applies to the threshold value, θ. Assuming
the positive and negative ground literals are linearly separable with respect to
the selected antecedents, this update procedure is guaranteed to converge after
observing a finite number of ground literals [3].

The second and third problems addressed by weight learning concern the deci-
sion of whether and when to add new antecedents to a rule. The decision is based
on determining whether the current set of antecedents are sufficient to let the
weights converge. When weights cannot converge, we call the rule unlearnable
with respect to the currently selected antecedents. This then triggers selection of
new antecedents, which continues in conjunction with weight learning until the
weights converge, or there are no more available antecedents (there is no bound
on the number of antecedents to a given rule). Likewise, when the weights have
converged, we call the rule learned, which halts the antecedent selection process
and initiates removal of any irrelevant antecedents. To meet these two require-
ments, SCALE uses a modification of the perceptron algorithm [3] originally
developed for perceptron trees [6] for learning the antecedent weights.

Briefly, the Perceptron Convergence and Cycling Theorems [3] are combined
with empirically established threshold values to provide definitions for learned
and unlearnable. A predicate with n antecedents is learned if it correctly evalu-
ates l(n) consecutive ground literals. Similarly, the predicate is unlearnable if it
makes u(n) consecutive weight updates without exploring a new area of weight-
space. Given this ability to recognize predicates as learned and unlearnable,
each predicate must determine a set of antecedents that is sufficient for learning.
Stracuzzi [5] provides details on the empirical determination of l(n) and u(n).

3.5 Removing Irrelevant Antecedents

After weight learning converges, the final component of removing (pruning) ir-
relevant and redundant antecedents begins. Pruning is important for several
reasons. First, bottom-up evaluation is most efficient when the number of an-
tecedents to a given predicate is small. Few unnecessary antecedents can quickly
lead to many unnecessary predicate evaluations. Second, the presence of extra
antecedents can affect rule generalization adversely by making the rule overly
specific. Simplifying the rules also helps to improve interpretation by humans.

Scale employs an online version of the Randomized Variable Elimination
(RVE) algorithm [7] for pruning. Briefly, RVE is a general-purpose feature se-
lection algorithm motivated by the idea that, in the presence of many irrelevant
variables (here, antecedents), the probability of successfully selecting several
irrelevant variables simultaneously at random is quite high. The algorithm com-
putes the cost of attempting to remove k input variables of n remaining variables
given that r are relevant. A sequence of values for k (given n and r) is then found
by minimizing the aggregate cost of removing all N − r irrelevant inputs. Note
that n represents the number of remaining variables, while N denotes the total
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number of variables in the original problem. Since r is not known in advance,
methods for estimating its value are employed.

Rule simplification in scale relies heavily on weight learning. Here, a fully
trained copy of the predicate is retained while various reductions to the set of
antecedents are considered. This is an important step, as a fully trained copy of
the rule remains available to act as an antecedent to other predicates, even while
pruning occurs. Scale therefore maintains knowledge stability [8] during struc-
tural revision, which has important implications for the success and efficiency of
learning.

4 Experimental Evaluation

The objective of this work is to present a statistical method for incremental
induction of a first-order knowledge base. In the following experiments, we will
show that our approach can construct new, hierarchically structured rules that
generalize the ground literals that were used to create them. We show that
our method captures the domain structure necessary for producing a succinct
and accurate knowledge base that generalizes well to new situations. We also
demonstrate that our approach is computationally efficient.

4.1 Evaluation Measures and Protocol

In order to evaluate the generality and structure of the learned rules, along with
the computational efficiency of the scale algorithm, we focus on the following
three properties of the algorithm and its performance.

– Rule accuracy measures the ability of each predicate to correctly evaluate
binding combinations not encountered during learning.

– Rule complexity measures the number of antecedents to each predicate and
provides a view of the density of the learned knowledge base.

– Search space size counts the number of hypotheses considered during learn-
ing, providing a view of the algorithm’s efficiency and scalability.

CPU time is not a consideration here, as scale and the algorithms against
which we compare it are implemented in different programming languages with
varying levels of optimization. Moreover, some of the algorithms operate on batch
data, which trades less CPU time for greater memory requirements, while others
operate in an online manner.

We apply the above measures to two systems in addition to scale. First is
foil6.4, using default options [9]. Foil is one of a few ILP systems with both
the ability to learn multiple predicates from ground literals, and a ready-to-
use implementation available. Foil differs from scale in that it requires batch
rather than online data, computes a total ordering over concepts prior to learning
instead of ordering concepts by learnability, and uses a strictly symbolic repre-
sentation instead of a combination of symbolic and subsymbolic representations.
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The second system is the Alchemy implementation [10] of Markov logic net-
works [11]. Structure learning in Alchemy attempts to learn a global list of
weighted, first-order clauses that implicitly cover all of the available ground lit-
erals. This approach is quite different from either scale or foil, which learn
individual definitions for each predicate. Nevertheless, the result is an intension-
ally defined, first-order knowledge base that can be used to infer the truth value
(or probability) of any ground literal given background knowledge.

The exact test procedure used for each learning system depends on whether
the system is online or batch. The batch systems (foil and Alchemy) were
provided with all ground literals for each predicate in the knowledge base at the
beginning of execution. Scale was presented with one literal at a time. Each
literal was drawn at random and without replacement from the entire knowledge
base of literals (all predicates) until all literals were presented. After this, all
ground literals were replaced, and the cycle began again.

The ground literals used in our experiments were divided into separate sets
for learning and for evaluation. The sets were selected at random over a uniform
distribution for concepts with arity two or greater. However, since some concepts
contain very lopsided distributions of positive and negative instances, we selected
a fixed number of positive and negative ground literals for each concept. For arity
one concepts, the training and testing examples were chosen manually. This
is necessary because the number of unique examples is small, and a random
selection is unlikely to be representative of the target concept. The objective
in selecting data manually was to act as a terse instructor by choosing a small
number of illustrative examples.

4.2 Chess Domain Overview

Chess presents a rich and structured domain. There are six pieces, each pos-
sessing its own rules of movement and distinct strategies. More importantly, the
pieces often combine to produce complex tactical and strategic patterns.

As described earlier, each constant in the domain represents a vector of three
integers which describe each cell on a standard 8 × 8 chess board. These cells
then form the 832 (13 × 8 × 8) constants which may then be bound to the
arguments of each predicate. The representation used here is not necessarily the
most natural possible choice for the domain. However, we choose this approach
to add additional levels of structure to the knowledge base in an effort to better
demonstrate the structure-learning properties of the systems.

While scale supports this representation for domain constants directly, foil

and Alchemy do not. We therefore provided three predicates in background
knowledge that the two systems could use to transform the above representa-
tion into a representation that they supported. Pilot tests confirmed that this
approach was effective for both systems.

There are 128 concepts for which definitions must be learned. Of these, 71
have arity one, with 28 concepts describing cell locations such as rank and file,
and 43 describing cell occupants such as king, or white queen. The remaining
57 concepts have arity two, with 19 of these describing relations among cell
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locations, such as whether cells lie on the same rank, file or diagonal. The final
38 concepts test whether a move from one cell to another constitutes a legal move
for a given piece, and whether a given piece can be captured. These concepts are
the most complex, and depend heavily on the definitions of previously learned
concepts. There are a total of 30,011 ground literals in the knowledge base used
for training, and 342,567 literals in the knowledge base used for testing.

4.3 Results

The scale system learned definitions for all 128 predicates, producing a mean
accuracy of 98.7% and a knowledge base with 12 layers of predicates and 612
dependencies (total antecedents over all predicates). The rules were produced
from a search of 3,966 hypotheses, where each addition or subtraction of an
antecedent from any rule constitutes one hypothesis. Analysis of the result shows
that the system experienced the most difficulty for concepts related to long-
distance piece movement (such as bishops, rooks, and queens) and piece capture.
This is not surprising given that these concepts represent the most complex
relations among pieces and locations.

These results are particularly impressive given that neither foil nor Alchemy
completed learning in the full chess domain. Foil was terminated after ten
CPU days for lack of progress in computing its initial ordering over predicates.
Alchemy was terminated after two days, at which point it had exhausted all avail-
able main memory on the host computer and caused the system to thrash. The
Alchemy result is not surprising. The first-order nature of its external represen-
tation is deceiving. Internally the algorithm enumerates the first-order predicates
into propositions prior to inference and learning. This underlying flat represen-
tation and the statistical nature of the algorithm are not well suited to highly
structured domains or sparse data sets.

In an effort to produce more informative results, we next disregarded the last
38 concepts (all related to piece movement and capture) and ran the experiments
again. Although Alchemy still required too much memory to complete the ex-
periment, both scale and foil were successful. In this case, scale produced
100% accuracy on all 90 predicates, and created a knowledge base with three
layers and 47 dependencies from a search of 1,081 hypotheses. Foil produced a
knowledge base with a mean accuracy of 79.2%, using 8 layers, 892 dependencies
and 1,973 hypotheses.

We turn now to the task of finding and comparing trends in the searches con-
ducted by the learning algorithms. Figure 1 plots hypothesis complexity, as mea-
sured by the number of dependencies, against time, as measured by the number
of hypotheses considered. Both scale and foil increase hypothesis complex-
ity at a gradual pace. This is deceptive, however. Scale is training on all 90
concepts simultaneously, while foil trains in sequence. The difference becomes
clear as scale begins to reduce hypothesis complexity while foil continues to
increase. Scale does a better job of selecting only relevant dependencies.

Scale also experiences a long sequence of hypotheses with nearly constant
complexity between 400 and 800 hypotheses considered. This indicates that the
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Fig. 2. Changes in hypothesis generalization levels during search

number of new dependencies added is offset by the number of dependencies
removed. This is an attractive property in that it keeps evaluation costs low.

Figure 2 shows the generalization results of the algorithms. Scale improves its
performance over time, because it attempts to learn all concepts simultaneously,
and continues until all concepts are learned. So even though scale performs only
local searches when attempting to find predicate definitions, the resulting change
in performance is global in scope. Improvements to the definitions of lower-
level predicates also improve performance at higher levels. Foil’s performance
is less monotonic. Predicate definitions are still induced via local search, but the
predicates are learned in an automatically determined, fixed order. The result
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is an overall decline in generalization performance over time, because complex
predicates are not considered or evaluated during early stages of induction.

Another interesting note concerns the substantially different order in which
scale and foil learn concepts. Foil attempts to learn the concepts approx-
imately in order from simple to complex, while scale simply tries to learn
all concepts simultaneously, but makes them available for use as background
knowledge in whatever order the system acquires a sufficiently reliable predicate
definition (as defined by the learned test). One may expect the two orderings
to be similar, but in this case they are not, and the generalization results imply
that scale’s approach makes more sense for learning.

Figure 3 shows a scatter-plot comparison of scale and foil on the reduced
chess domain. Each scatter-plot is divided in half by a diagonal line representing
equal performance by the two algorithms. Each point represents one concept
from either the small or large cards domain. Points located above the diagonal
line indicate that scale’s performance value on the given metric was higher,
while points located below the line indicate that foil’s metric value was higher.
Higher values are better for accuracy, but lower values are preferred for number
of antecedents. The number of hypotheses and number of layers metrics are
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domains. The plots show concept accuracy (a), location in hierarchy (b), number of
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292 D.J. Stracuzzi and T. Könik

included here for comparison, but are not easily lumped into higher/lower is
better groups. For example, less search is good (fewer hypotheses considered)
provided that generalization and compactness does not suffer.

Panel (a) indicates scale’s dominance over foil with respect to concept ac-
curacy. Panel (b) shows that foil tends to require more representational layers
than scale for a given concept. Panel (c) shows that both methods tend to
require similar sized searches for learning, although the large cluster of points
near the origin favors scale. Most important however, is panel (d), which shows
that even though scale and foil consider similar numbers of hypotheses during
learning, foil almost always requires more dependencies to represent the con-
cepts. This is important because the number of dependencies influences the num-
ber of arguments that must be estimated, which in turn influences the amount
of data required. The results therefore suggest that scale has smaller data re-
quirements than foil.

5 Discussion

Scale’s strengths in constructing knowledge bases from ground literals stem from
two main ideas. The first idea derives from scale’s use of threshold-implication
to model each predicate definition. This brings two important advantages. One
is that threshold-implication can represent functions more general than the horn
clauses used by many ILP systems. This provides greater flexibility in learning
even while restricting each predicate to simple concepts. Other, more sophisticated
forms of weighted-implication are possible, but deciphering the reasons for learn-
ing failure can be a challenge. For example, the learner’s hypothesis space may be
inappropriate, data may be insufficient, or the search space may be intractably
large. Scale’s use of threshold-implication reduces the number of reasons why
learning may fail. All concepts must be linearly separable, so when learning fails,
we know that the predicate requires additional (or different) antecedents.

The other advantage of threshold-implication is that the weights associated
with each antecedent provide for more a continuous relationship among the dif-
ferent hypotheses that a predicate may represent. Adjusting the weight of an
antecedent provides a much finer level of control than simply adding or remov-
ing terms or clauses. The effect is to provide scale with the ability to experi-
ment with relations among many antecedents simultaneously and efficiently. We
can also view the weights as a approximate distance measure between distinct
predicate definitions, allowing for a simple and direct form of comparison.

The second key idea is the approach of organizing the learned predicates hier-
archically in the knowledge base to reduce the number of candidate dependencies
that are explicitly evaluated by the learning algorithm. This impacts both the
amount of computation needed to learn a model, and the quality of the learned
model. Pearl [12] suggests that the number of models considered by an algo-
rithm (along with the number of comparisons made [13]) influences the chance
of overfitting. Scale’s approach to antecedent selection has the added benefit
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of trying to provide a small set of antecedents, rather than a minimal set. This
provides flexibility and useful forms of redundancy to the learner, for example by
providing alternate concept representations in case one of the selected predicates
has an inaccurate model of its target concept.

5.1 Related Work

Blockeel and De Raedt [14] discuss the problem of converting extensional pred-
icate definitions into intensional predicate definitions. Their approach uses the
claudien system for finding valid clauses in theory [15], plus a measure of rule
quality based on the extent to which the rule compresses the knowledge base, to
build intensional predicate definitions. A key difference between this approach
and scale is that scale uses a combined numerical and logical representation.
One consequence of this difference is that scale operates incrementally, while
the claudien-based approach requires batch data.

Few incremental ILP systems appear in the literature. They often assume
noise-free data and need to verify changes to the hypothesis either by consulting
an oracle [16,17] or by experimenting with the environment [18]. Such systems
tend not to be robust due in part to their search of a discrete search space.
Adding a single condition to a hypothesis often has great impact on its quality
and is therefore difficult to justify with a single incremental example. In contrast,
scale uses new examples to navigate a continuous space of numerical weights.
The hypothesis structure changes only after sufficient numbers of examples are
observed.

As an exception to the above, Basilio, Zaverucha, and Barbose [19] discuss
the first-order cascade artmap (foca) system, which is a neural network-based
theory learning and refinement system. One difference between foca and scale

is that the former uses fuzzy artmap neural networks [20], which have repre-
sentational properties similar to threshold-implication but different training and
structural properties, to represent rules instead of perceptrons. A second dif-
ference is that foca learns only a single predicate during each run. Although
multiple runs can be used to learn multiple predicates, this is different from
scale’s approach, which does not assume that a complete definition for one
predicate will be learned before learning begins on another predicate definition.

Probabilistic logic learning frameworks [21] combine statistical methods with
logical learning. For example, statistical logic programs [22] and Bayesian logic
programs [23] associate logical structures with probabilities. Although scale

also associates numbers with logical structures, its hypotheses are not proba-
bilistic. Scale uses a numeric representation only for incremental hypothesis
space search. At any given time, the current hypothesis represents a complex
logical formula. Most probabilistic logic systems either focus on parameter ad-
justment [24] or structure learning [25]. Interleaving the two remains an active
research area [26], and scale has demonstrated that it can naturally combine
parameter adjustment with structural learning.
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5.2 Future Work

Two directions for future work concern learning rules with existentially quan-
tified variables, and learning recursive rules. For the former problem, we can
allow scale to consider creating quantified variables in antecedents in addition
to adding antecedents with fully bound variables. This constitutes a substantial
expansion of the search space however, and further study is required to deter-
mine how to achieve this expansion while still respecting scale’s assumptions
about predicate simplicity.

Recursive rule learning is already possible in scale, but requires further study
to improve tractability. The system currently assumes that only successfully
learned predicates may become antecedents for unlearned predicates. This sim-
plifies the weight learning task because predicates with stable definitions provide
consistent input signals. However, this assumption may also prevent scale from
finding the most compact representation. In essence, scale enforces a partial
ordering on the intermediate concepts based on learnability. Other orderings are
possible and may lead to more efficient structures. Removing this assumption
would both alleviate this problem and would allow for learning of recursive def-
initions. Reliance on inconsistent and noisy signals (unlearned predicates) will
tend to require more examples, however, and constitutes a non-trivial expansion
of the search space.

A third direction for expanding scale would be to embrace a probabilis-
tic representation of the predicates. Swapping the perceptron learner for Naive
Bayes would accomplish much of the change without altering representational
power, but other questions remain. For example, the definitions of learned and
unlearnable must be adjusted, but the mapping is not immediately clear. Sim-
ilarly, the threshold at which a connection between one concept and another
becomes useful (or necessary) is also unclear. The scoring functions used by
Bayes nets solve exactly this problem, but the consequences of merging of these
functions with the type of search conducted by scale are unclear.

6 Conclusion

Knowledge bases play an important role in a wide variety of work in artifi-
cial intelligence. In this work, we presented a statistical approach to building
hierarchically structured, first-order knowledge bases. We showed that our ap-
proach can construct new rules from both background knowledge and ground
literals to generalize the ground literals. We also demonstrated that our method
produces succinct and accurate knowledge bases, and successfully captures the
domain structure. Finally, we showed that our approach is computationally ef-
ficient and scales well to domains with many relations. Many lines of future
development are available for scale, but our initial results show that the sys-
tems presents an excellent starting point for new research into knowledge base
induction.
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Abstract. ILP systems which use some form of Inverse Entailment (IE)
are based on clause refinement through a hypotheses space bounded by
a most specific clause. In this paper we give a new analysis of refinement
operators in this setting. In particular, Progol’s refinement operator is re-
visited and discussed. It is known that Progol’s refinement operator is in-
complete with respect to the general subsumption order. We introduce a
subsumption order relative to a most specific (bottom) clause. This sub-
sumption order, unlike previously suggested orders, characterises Progol’s
refinement space. We study the properties of this subsumption order and
show that ideal refinement operators exist for this order. It is shown that
efficient operators can be implemented for least generalisation and great-
est specialisation in the subsumption order relative to a bottom clause. We
also study less restricted subsumption orders relative to a bottom clause
and show how Progol’s incompleteness can be addressed.

1 Introduction

Searching a refinement lattice bounded below by a bottom clause is the basis of
several state-of-the-art ILP systems (e.g. Progol [7], Aleph [11]). These systems
use refinement operators together with a search method to explore a bounded
hypotheses space. For example, in the default setting, Progol uses a A*-like
search together with a top-down refinement operator. Progol’s refinement oper-
ator is designed to avoid redundancy in a A*-like search. This, however, leads
to incompleteness of Progol’s refinement operator with respect to the general
subsumption order. There have been previous attempts to characterise Progol’s
refinement space and also to address the Progol’s incompleteness. In particular,
special cases of subsumption have been suggested to characterise Progol’s refine-
ment space [1]. In this paper we give a new analysis of refinement operators in
a Progol-like ILP system. We introduce a subsumption order relative to a most
specific (bottom) clause. This subsumption order, unlike previously suggested
orders, characterises Progol’s refinement space. We show the existence of ideal
refinement operators for this subsumption order. It is also shown that efficient
operators can be designed for least generalisation and greatest specialisation in
the subsumption order relative to a bottom clause. We also study less restricted
subsumption orders relative to a bottom clause and show how Progol’s incom-
pleteness (due to the choice of ordering in the bottom clause) can be addressed.
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c© Springer-Verlag Berlin Heidelberg 2008



298 A. Tamaddoni-Nezhad and S. Muggleton

The theoretical results presented in this paper can be applied to ILP systems
which use Inverse Entailment (IE) as well as any other ILP system which uses
a most specific clause to restrict the search space. In this paper we first review
clause refinement in Progol as an example of an IE-based ILP system. Section 3,
gives examples of Progol’s incompleteness with respect to the general subsump-
tion order. In order to characterise Progol’s refinement, Sections 4 defines sequen-
tial subsumption order relative to a bottom clause and describes the properties
of this subsumption order. In section 5, refinement operators are defined for sub-
sumption order relative to a bottom clause and the properties of these operators
are discussed. Section 6 describes less restricted subsumption orders relative to a
bottom clause and shows how Progol’s incompleteness can be addressed. Related
work is discussed in Section 7. Section 8 concludes the paper.

2 Clause Refinement in Progol

We assume the reader to be familiar with the basic concepts from logic pro-
gramming and inductive logic programming [8] and also the basic concepts from
ordered sets and lattices [3]. The following definition is a reminder of the concept
of refinement operators and several properties of these operators.

Definition 1 ([8,1]). Let 〈G,�〉 be a quasi-ordered set. A (downward) refine-
ment operator for 〈G,�〉 is a function ρ, such that ρ(C) ⊆ {D|C � D}, for
every C ∈ G.

– The sets of one-step refinements, n-step refinements and refinements of some
C ∈ G are respectively: ρ1(C) = ρ(C), ρn(C) = {D| there is an E ∈ ρn−1(C)
such that D ∈ ρ(E)}, n ≥ 2 and ρ∗(C) = ρ0(C) ∪ ρ1(C) ∪ ..

– A ρ-chain from C to D is a sequence C = C0, C1, . . . , Cn = D, such that
Ci ∈ ρ(Ci − 1) for every 1 ≤ i ≤ n.

– ρ is locally finite if for every C ∈ G, ρ(C) is finite and computable.
– ρ is proper if for every C ∈ G, ρ(C) ⊆ {D|C ) D}.
– ρ is is complete if for every C, D ∈ G such that C ) D, there is an E ∈ ρ∗(C)

such that D ∼ E (i.e. D and E are equivalent in the �-order).
– ρ is weakly complete if ρ∗(�) = G, where � is the top element of G.
– ρ is non-redundant if for every C, D, E ∈ G, E ∈ ρ∗(C) and E ∈ ρ∗(D)

implies C ∈ ρ∗(D) or D ∈ ρ∗(C).
– ρ is ideal if it is locally finite, proper and complete.
– ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward refinement
operator.

The Progol algorithm [7] is based on successive construction of definite clause
hypotheses H from a language L. H must explain the examples E in terms of
background knowledge B. Each clause in H is found by choosing an uncovered
positive example e and searching through the graph defined by the refinement
ordering � bounded below by the bottom clause associated with e. We define
this setting more formally as follows.
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Definition 2 (Progol refinement setting). Let S = 〈B, E,L,�〉 be Progol’s
ILP setting as defined in [7]. Let E consist of a set of positive and negative exam-
ples (ground unit clauses). The empty clause, denoted by �, is the maximal�,L
element in L. The “bottom” clause, denoted by ⊥, is the least�,L element such
that B,⊥ |= e. Refinement of clause C, denoted by ρ(C), is the set of maximal�,L
clauses D such that C ) D � ⊥.

The refinement operator in Progol is designed to avoid redundancy and to main-
tain the relationship � � H � ⊥ for each clause H . Since H � ⊥, it is the case
that there exists a substitution θ such that Hθ ⊆ ⊥. Thus for each literal l in H
there exists a literal l′ in ⊥ such that lθ = l′. Clearly there is a uniquely defined
subset ⊥(H) consisting of all l′ in ⊥ for which there exists l in H and lθ = l′. A
non-deterministic approach to choosing an arbitrary subset S′ of a set S involves
maintaining an index k. For each value of k between 1 and n, the cardinality of
S, we decide whether to include the kth element of S in S′. Clearly, the set of
all series of n choices corresponds to the set of all subsets of S. Also for each
subset of S there is exactly one series of n choices. To avoid redundancy and
maintain θ-subsumption of ⊥ Progol’s refinement operator maintains both k and
θ. The refinement operator ρ defined in [7] allows more than one literal in H to
be mapped to the same literal l′ in ⊥. However, in Progol’s implementation of
the refinement operator, index k is incremented after each step for the sake of
efficiency. This means each literal of ⊥ can be considered only once. In Appendix
A, we give a revised definition (ρ0) which describes the refinement operator as
implemented in Progol.

3 Characterising Progol’s Refinement

In this section we show that Progol’s refinement cannot be described by the
general subsumption order and that we need the notion of “sequential subsump-
tion” in order to capture Progol’s refinement. It can be shown that a refinement
operator cannot be both complete and non-redundant [1]. However, a refinement
operator can be weakly complete and non-redundant (optimal). As mentioned
in the previous section, Progol’s ρ is designed to be non-redundant and therefore
it cannot be complete. However, it is known that Progol’s refinement operator
is also not weakly complete with respect to the general subsumption order [7].
This is demonstrated in the following example1.

Example 1. Let B contain definitions for decrementation (dec), addition (plus)
and the clause mult(0, X, 0) ← with appropriate mode declarations M and let
the example e be the clause mult(1, 1, 1)←. Then ⊥ is the clause

mult(A, A, A)← dec(A, B), plus(B, A, A), plus(B, B, B),
mult(B, A, B), mult(B, B, B).

1 This example is a corrected version of Example 30 in [7].
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Now consider clause C:

C = mult(U, V, W )← dec(U, X), mult(X, V, Y ), plus(Y, V, W ).

Clause C is in L, but given the ordering over ⊥ there will be no element of
Progol’s ρ∗(�) containing this clause or a subsume-equivalent of this clause. �

This first type of incompleteness is due to the choice of ordering in the bottom
clause and the variable dependencies in the literals. As mentioned in the previous
section, Progol’s refinement uses an indexing over the literals and the literals in
⊥ can only be considered from left to right.

As mentioned in the previous section, each literal from ⊥ can be selected
only once. This leads to the second type of incompleteness. The example below
shows that Progol’s refinement space is not a lattice with respect to the general
subsumption, as the least general generalisation of clauses is not always in the
refinement space.

Example 2. Let C, D and ⊥ be clauses as defined below

C = p(X, Y )← q(X, X), q(Y, W ).
D = p(X, Y )← q(Z, X), q(Y, Y ).
⊥ = p(X, Y )← q(X, X), q(Y, Y ).

C and D can be generated by Progol’s refinement given ⊥, however, clause
E below which is the least general generalisation (lgg) of C and D cannot be
generated.

E = p(X, Y )← q(Z, X), q(U, U), q(Y, W ). �

As another example of the second type of incompleteness, consider the following
example adopted from [1].

Example 3. Let ⊥ = p(X) ← q(X, X), then Progol’s refinement only considers
the following hypotheses.

C1 = p(X)
C2 = p(X)← q(X, X)
C3 = p(X)← q(X, Y )

However, the following clauses which subsume ⊥ are not considered by Pro-
gol’s refinement.

C′
1 = p(X)← q(X, Y ), q(Y, X)

C′
2 = p(X)← q(X, Y ), q(Y, Z), q(Z, X)

. . . �

It has been suggested [1] that the second type of incompleteness is not a draw-
back as it can be justified by the examples and the MDL heuristic. In order
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to characterise Progol’s refinement, the authors of [1] suggested a special case
of subsumption, called weak subsumption, which does not allow substitutions
that identify literals (i.e. for Cθ there are no literals L1 and L2 in C such that
L1θ = L2θ). For example, the clause p(X ′) ← q(X ′, Y ′), q(Y ′, X ′) subsumes
⊥ = p(X)← q(X, X) with respect to the general subsumption, but it does not
weakly subsume it. This is because substitution {X ′/X, Y ′/X} identifies liter-
als q(X ′, Y ′) and q(Y ′, X ′). The weak subsumption ordering, therefore, char-
acterises the second type of incompleteness. However, it does not capture the
incompleteness due to the ordering of the literals. For example, consider clauses
C and ⊥ in Example 1. C weakly subsumes ⊥ but clause C is not considered by
Progol’s refinement.

As mentioned in the previous section, Progol’s refinement operator scans ⊥
from left to right and for each literal l′ of ⊥ decides whether to include a general-
isation of it (i.e. l, where lθ = l′) in H or not. Hθ can be, therefore, characterised
as a “subsequence” of ⊥ rather than a “subset” of ⊥. In the following sections we
first define a special case of subsumption based on the idea of subsequences, and
then we study the properties of this subsumption order. We show that Progol’s
refinement can be characterised by sequential subsumption relative to ⊥. We also
show that ideal refinement operators exist for this special case of subsumption.

4 Sequential Subsumption

Even though Progol does not use an explicit representation for ordered clauses,
clauses in L are defined with a total ordering over the literals (Definition 21
in [7]). In order to characterise Progol’s refinement we adopt an explicit repre-
sentation for ordered clauses. The idea of ordered (or sequential) clauses is to
consider a clause as a sequence of literals rather than a set of literals. This idea
has been used in logic programming, in particular in the context of resolution
(e.g. [2]). The concept of ordered clauses has been also used in ILP. For example,
when defining upward refinement operators it is sometime necessary to duplicate
literals in order to correctly invert an elementary substitution. Duplication of
literals is not allowed for conventional clauses (which use a set notation) and
therefore ordered clauses are used instead [8]. A subsumption relation for or-
dered clauses is studied in [4]. The difference between this subsumption order
and the subsumption order considered in this paper is discussed in Section 7.
There are also other applications of ordered clauses, for example in the context
of data mining from sequential data(e.g. [6]). In this paper we use the same
notion used in [8] and an ordered clause is represented as a disjunction of liter-
als (i.e. L1 ∨ L2 ∨ · · · ∨ Ln). The set notation (i.e. {L1, L2, . . . , Ln}) is used to
represent conventional clauses.

Definition 3 (Ordered clause). An ordered clause
−→
C is a sequence of literals

L1, L2, . . . , Ln and denoted by
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln. The set of literals in

−→
C

is denoted by C.
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Unlike conventional clauses, the order and duplication of literals matter for
ordered clauses. For example,

−→
C = p(X) ∨ ¬q(X),

−→
D = ¬q(X) ∨ p(X) and

−→
E = p(X) ∨ ¬q(X) ∨ p(X) are different ordered clauses while they all corre-
spond to the same conventional clause, i.e. C = D = E = {p(X),¬q(X)}.

Selection of two clauses is defined as a pair of compatible literals and this
concept was used by Plotkin to define least generalisation for clauses [9]. How-
ever, in this paper we use selections to define mappings of literals between two
ordered clauses.

Definition 4 (Compatible literals). Literals L and M are compatible if they
have the same sign and predicate symbol.

Definition 5 (Selection of clauses). Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D =

M1 ∨M2 ∨ · · · ∨Mm be ordered clauses. A selection of
−→
C and

−→
D is a pair (i, j)

where Li and Mj are compatible literals.

Definition 6 (Selection function). Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D =

M1∨M2∨· · ·∨Mm be ordered clauses. A set s of selections of
−→
C and

−→
D is called

a selection function if it is a total function of {1, 2, . . . , n} into {1, 2, . . . , m}.

Example 4. Let
−→
C = L1∨L2 ∨L3 and

−→
D = M1 ∨M2∨M3 ∨M4 be two ordered

clauses and the set of all selections of
−→
C and

−→
D be S = {(1,1), (1,2), (2,1), (2,2),

(3,4)}. Then, s1 = {(1,1), (2,2), (3,4)}, s2 = {(1,1), (2,1), (3,4)} and s3 = {(1,2),
(2,1), (3,4)} are examples of selection functions of

−→
C and

−→
D . �

Definition 7 (Subsequence). Let
−→
C = L1∨L2∨· · ·∨Ll and

−→
D = M1∨M2∨

· · · ∨Mm be ordered clauses.
−→
C is a subsequence of

−→
D , denoted by

−→
C �s −→D , if

there exists a strictly increasing selection function s such that for each (i, j) ∈ s,
Li = Mj.

Example 5. Suppose that in Example 4, we have L1 = L2 = M1 = M2 and
L3 = M4.

−→
C is then a subsequence of

−→
D because there exists strictly increasing

selection function s1 which maps each literal Li from
−→
C to an equivalent literal

Mj from
−→
D . �

Definition 8 (Ordered substitution). Let
−→
C = L1∨L2∨· · ·∨Ll be an ordered

clause and θ be a substitution.
−→
C θ is defined as follows,

−→
C θ = L1θ∨L2θ∨· · ·∨Llθ.

Definition 9 (Sequential subsumption). Let
−→
C and

−→
D be ordered clauses.

We say
−→
C is a sequential generalisation of

−→
D , denoted by

−→
C �s

−→
D , if there exists

a substitution θ such that
−→
C θ is a subsequence of

−→
D .
−→
C is a proper sequential

generalisation of
−→
D , denoted by

−→
C )s

−→
D , if

−→
C �s

−→
D and

−→
D ��s

−→
C .
−→
C and−→

D are equivalent with respect to sequential subsumption, denoted by
−→
C ∼s

−→
D , if−→

C �s
−→
D and

−→
D �s

−→
C .
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Example 6. Let
−→
B =p(X1, Y1)∨q(X1, Y1)∨r(X1, Y1)∨r(Y1, X1),

−→
C =p(X2, Y2)∨

r(U2, Y2)∨r(Y2 , V2) and
−→
D = p(X3, Y3)∨r(Y3 , V3)∨r(U3, Y3) be ordered clauses.

Let θ1 = {X2/X1, Y2/Y1, U2/X1, V2/X1}, then
−→
C θ1 is a subsequence of

−→
B and

therefore
−→
C �s

−→
B . However, there is no substitution θ2 such that

−→
Dθ2 is a subse-

quence of
−→
B and therefore

−→
D ��s

−→
B . Note that for conventional clauses B, C and

D we have Cθ1 ⊆ B and similarly for θ2 = {X3/X1, Y3/Y1, V3/X1, U3/X1} we
have Dθ2 ⊆ B and therefore C � B and D � B. �

The following theorem shows the relationship between sequential subsumption
and the general subsumption order.

Theorem 1. Let
−→
C and

−→
D be ordered clauses. If

−→
C �s

−→
D , then C � D.

Proof. Suppose
−→
C �s

−→
D , then according to Definition 9 there exists a substitu-

tion θ such that
−→
C θ is a subsequence of

−→
D . Let

−→
C θ = L1θ ∨L2θ ∨ · · · ∨Llθ and−→

D = M1 ∨M2 ∨ · · · ∨Mm. Then for every literal Liθ in
−→
C θ there exists a literal

Mj in
−→
D such that Liθ = Mj, and therefore Cθ ⊆ D. Hence, C � D. �

Note that as shown in Example 6, the converse of Theorem 1 does not hold in
general.

The languages which we consider in this paper (e.g. L,
−→L⊥, etc.) correspond

to a set of clauses which are generalisations of a flattened bottom clause [7].
Therefore, all clauses in L,

−→L⊥, etc. are function-free and all substitutions we
consider are variable substitutions2. Progol’s refinement considers a subset of
clauses in L which are sequential generalisation of the bottom clause. This subset
of ordered clauses are defined as follows.

Definition 10 (
−→L⊥). Let

−→⊥ be the bottom clause as defined in Definition 2.
−→
C

is in
−→L⊥ if and only if there exists a substitution θ such that

−→
C θ is a subsequence

of
−→⊥ .

Let us consider the examples in the previous section with respect to Definition 10.
In Example 1, if we now consider

−→
C and

−→⊥ as ordered clauses then
−→
C �∈ −→L⊥,

because there is no substitution θ such that
−→
C θ can be a subsequence of

−→⊥ .
Similarly in Example 3,

−→
C′

1 �∈
−→L⊥, etc.

According to Definition 10, for each ordered clause
−→
C in

−→L⊥ there exists a
substitution θ such that

−→
C θ is a subsequence of

−→⊥ . Thus, there exists a selection
function s which maps each literal of

−→
C θ to a literal of

−→⊥ and this selection func-
tion is strictly increasing. This implies that there is an injective mapping from
the literals of

−→
C θ to the literals of

−→⊥ . Therefore, clause
−→
C can be encoded by

the substitution θ and a set of integers K, i.e. the range of the selection function
s. In Progol’s refinement operator, θ and K are maintained for each clause in

2 Substitution θ = {vj/uj} is a variable substitution if all vj and uj are variables.
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order to decode the clause from
−→⊥ . Moreover, according to Definition 21, refine-

ments of a clause are constructed by adding literals which are generalisations of
a literal from

−→⊥ . These literals are generated by δ and they all correspond to
the same literal lk from

−→⊥ . This means that a literal Li from
−→
C is comparable

(with respect to Progol’s refinement) to a literal Mj from
−→
D if Li and Mj are

both mapped to the same literal of
−→⊥ . This leads to more specific definitions for

subsequence and sequential subsumption.

Definition 11 (Subsequence relative to ⊥). Let
−→⊥ and

−→L⊥ be as defined
in Definition 10 and

−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D = M1 ∨M2 ∨ · · · ∨Mm be

ordered clauses in
−→L⊥ such that

−→
C �s1

−→⊥ and
−→
D �s2

−→⊥ .
−→
C is a subsequence

of
−→
D relative to ⊥, denoted by

−→
C �s

⊥
−→
D , if there exists a strictly increasing

selection function s such that for each (i, j) ∈ s, Li = Mj and there exists k,
1 ≤ k ≤ n and (i, k) ∈ s1 and (j, k) ∈ s2.

In Definition 11 the selection function s maps literal Li from
−→
C to an equivalent

literal Mj from
−→
D if they both correspond to the same literal from

−→⊥ .

Definition 12 (Sequential subsumption relative to ⊥). Let
−→⊥ and

−→L⊥ be
as defined in Definition 10 and

−→
C and

−→
D be ordered clauses in

−→L⊥. We say
−→
C

is a sequential generalization of
−→
D relative to ⊥, denoted by

−→
C �⊥

−→
D , if there

exists a substitution θ such that
−→
C θ is a subsequence of

−→
D relative to ⊥.

As shown in Example 1, Progol’s refinement cannot be weakly complete for
〈L,�〉, however, it can be weakly complete for 〈−→L⊥,�⊥〉.

Theorem 2. ρ0 is weakly complete for 〈−→L⊥,�⊥〉.

A sketch proof for this theorem is given in the Appendix.

5 Ideal Refinement Operators for Sequential
Subsumption Order Relative to ⊥

In this section we define a refinement operator ρ1 and show that ρ1 is ideal for
〈−→L⊥,�⊥〉. First we define a mapping function which is used in the refinement
operator. As mentioned in the previous section, in Progol’s refinement operator,
a substitution θ and a set of integers K are maintained for each clause in order
to decode the clause from

−→⊥ . In this setting, substitution θ maps variables from−→
C to the variables of

−→⊥ . The decoding, therefore, requires inverse substitution
θ−1. This can be achieved by maintaining the position of variables when the
substitution θ is constructed [8]. However, in the mapping function used in this
section, substitution θ maps variables from

−→� to the variables of
−→
C , where

−→�
is
−→⊥ with all variables replaced with new and distinct variables.
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Definition 13 (Mapping function c). Let
−→⊥ and

−→L⊥ be as defined in Def-
inition 10, n be the number of literals in ⊥.

−→� is
−→⊥ with all variables re-

placed with new and distinct variables. θ� is a variable substitution such that−→�θ� =
−→⊥ . Let θ be a variable substitution in Θ, where Θ = {θ′|θ′ ⊆ θ̂� and

if {x/z, z/y} ⊆ θ′ then x/y ∈ θ′} and θ̂� = {y/x|{x/z, y/z} ⊆ θ�}. Let K be
power-set of {1, . . . , n}. The mapping function c : K × Θ → −→L⊥ is defined as
follows:

c(〈K, θ〉) = (
n∨

i=1

li|i ∈ K and li is the ith literal of
−→�)θ.

The mapping function c, maps a tuple 〈K, θ〉 into an ordered clause
−→
C in

−→L⊥.
This mapping function also makes sure that the literals in

−→
C follow the same

order as literals in
−→⊥ . This condition is required for the refinement operator ρ1

which is intended to be complete for 〈−→L⊥,�⊥〉.
The refinement operator ρ1 is based on Laird’s refinement operator [5] adopted

for sequential subsumption and a refinement space bounded below by a bottom
clause.

Definition 14 (ρ1). Let
−→⊥ and

−→L⊥ be as defined in Definition 10,
−→
C be an

ordered clause in
−→L⊥, n be the number of literals in ⊥, k be a natural number,

1 ≤ k ≤ n,
−→� , Θ and K be defined as in Definition 13. Let K ∈ K, θ ∈ Θ,

−→
C =

c(〈K, θ〉) and the mapping function c be defined as in Definition 13. 〈
−→
C′, K ′, θ′〉

is in ρ1(〈
−→
C , K, θ〉) if and only if

−→
C′ = c(〈K ′, θ′〉) and either

1. K ′ = K ∪ {k}, k �∈ K and θ′ = θ or
2. K ′ = K, θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct variables

in the k1th and k2th literals of
−→� respectively and k1th and k2th are in K ′.

In Definition 14, ρ1 adds a most general literal from
−→� which has not been

added before (item 1) or it applies an elementary variable substitution such
that the clause subsumes

−→⊥ (item 2). We show that ρ1 is ideal for 〈−→L⊥,�⊥〉.
The completeness proof below is similar to the completeness proof for Laird’s
refinement operator [8,13] adopted for subsumption order relative to ⊥.

Lemma 1. Let
−→
C ,
−→
D be two ordered clauses in

−→L⊥ such that
−→
C θ =

−→
D for

some substitution θ. Then, there exists a ρ1-chain from
−→
C to

−→
D .

Proof. Suppose
−→
C ,
−→
D are ordered clauses and

−→
C θ =

−→
D . Then according to

Definition 8,
−→
C and

−→
D have the same predicate symbols at the same positions

and therefore can be regarded as atoms. We need to show that there exists a
ρ1-chain from

−→
C to

−→
D by repeatedly selecting step 2 in Definition 14. The proof

is then similar to the proof of this lemma for atoms (Theorem 4 in [10]). �

Lemma 2. Let
−→
C ,
−→
D be two ordered clauses in

−→L⊥ such that
−→
C is a subse-

quence of
−→
D relative to ⊥. Then, there exists a ρ1-chain from

−→
C to

−→
D .
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Proof. The proof is by induction on i the number of literals in
−→
D but not in

−→
C .

If i = 0 then
−→
C =

−→
D , and the empty chain satisfies the lemma. Assume for some

j, 0 ≤ j < i, the lemma is true. This implies that there is a ρ1-chain from
−→
C to−→

C j such that
−→
C j is

−→
C with j literals inserted such that

−→
C j is a subsequence of

−→
D relative to ⊥. We show that there is a ρ1-chain from

−→
C to

−→
C j+1. Let l be the

leftmost literal in
−→
D which is not in

−→
C j . Given that

−→
D ∈ −→L⊥ we can assume

that l is mapped to the k-th literal of ⊥. We consider the following two cases:
(a) if l is a most general literal with respect to

−→
C j , then l is the k-th literal of

−→�
and using item 1 in the definition of ρ1, 〈

−→
C j+1, K

′, θ〉 ∈ ρ1(〈
−→
C j , K, θ〉), where

K ′ = K∪{k}. (b) otherwise there is a most general literal l′ such that l′θ′ = l. In
this case, first using item 1 in the definition of ρ1, 〈

−→
C′

j+1, K
′, θ〉 ∈ ρ1(〈

−→
C j , K, θ〉)

and then according to Lemma 1 (and using item 2 in the definition of ρ1),
〈−→C j+1, K

′, θ′′〉 ∈ ρ∗1(〈
−→
C′

j+1, K
′, θ〉), where K ′ = K ∪ {k} and θ′′ = θθ′. Thus,

in both cases (a) and (b), there exists a ρ1-chain from
−→
C to

−→
C j+1 and this

completes the proof. �

Theorem 3. ρ1 is complete for 〈−→L⊥,�⊥〉.

Proof. Let
−→
C ,
−→
D be two ordered clauses in

−→L⊥ such that, for some θ,
−→
C θ is a

subsequence of
−→
D relative to ⊥. If we define

−→
E =

−→
C θ then

−→
E and

−→
C satisfy

Lemma 1, hence there is a ρ1-chain from
−→
C to

−→
E .
−→
E is a subsequence of

−→
D

relative to ⊥ and according to Lemma 2, there is a ρ1-chain from
−→
E to

−→
D . Thus,

there is a ρ1-chain from
−→
C to

−→
D via

−→
E . �

According to Definition 14, the refinement operator ρ1 works on an encoding of
a clause, i.e. 〈K, θ〉 rather than the clause itself. In the following we define the
order relation for the encoding tuples 〈K, θ〉, used in the mapping function c.
Then, we show that the mapping function c is order-embedding.

Definition 15. Let K and Θ be defined as in Definition 13 and K1, K2 ∈ K and
θ1, θ2 ∈ Θ. 〈K1, θ1〉 ⊆ 〈K2, θ2〉 if and only if K1 ⊆ K2 and θ1 ⊆ θ2. θ1 ⊆ θ2 if
and only if there exists a substitution θ such that θ2 = θ1θ. 〈K1, θ1〉 ∼ 〈K2, θ2〉
if and only if 〈K1, θ1〉 ⊆ 〈K2, θ2〉 and 〈K2, θ2〉 ⊆ 〈K1, θ1〉.

Theorem 4. Let K and Θ and mapping function c be defined as in Defini-
tion 13 and K1, K2 ∈ K and θ1, θ2 ∈ Θ. c(〈K1, θ1〉) �⊥ c(〈K2, θ2〉) if and only
if 〈K1, θ1〉 ⊆ 〈K2, θ2〉.

Proof. ⇒ : Let
−→
C ,
−→
D be ordered clauses such that

−→
C = c(〈K1, θ1〉) and

−→
D =

c(〈K2, θ2〉). Assume
−→
C �⊥

−→
D , then according to Theorem 3 there is a ρ1-chain

from
−→
C to

−→
D . Let this ρ1-chain be C = C′

0 �⊥ C′
1 �⊥ · · · �⊥ C′

m = D where
〈
−→
C′

i+1, K
′
i+1, θ

′
i+1〉 ∈ ρ1(〈

−→
C′

i, K
′
i, θ

′
i〉), 0 ≤ i < m. According to the definition of

ρ1, in each refinement step either 1) K ′
i ⊆ K ′

i+1 and θ′i+1 = θ′i or 2) K ′
i+1 = K ′

i

and θ′i ⊆ θ′i+1. Then it is always the case that K ′
i ⊆ K ′

i+1 and θ′i ⊆ θ′i+1, where
K ′

0 = K1, K
′
m = K2, θ

′
0 = θ1, θ

′
m = θ2. Thus, K1 ⊆ K2 and θ1 ⊆ θ2.
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⇐ : Let
−→
C = c(K1, θ1) = (

∨
li|i ∈ K1)θ1 and

−→
D = c(K2, θ2) = (

∨
lj |j ∈

K2)θ2 such that K1 ⊆ K2 and θ1 ⊆ θ2. According to Definition 15, θ2 = θ1θ for
some substitution θ. Then, given K1 ⊆ K2, for every literal liθ1 from

−→
C θ, we

have a literal liθ1θ from
−→
D where liθ1 and liθ1θ are both mapped to the same

literal li from
−→� (Definition 13). Thus,

−→
C θ is a subsequence of

−→
D relative to ⊥

and therefore
−→
C �⊥

−→
D . �

In the following we show the properness and the idealness of ρ1 for 〈−→L⊥,�⊥〉.

Lemma 3. Let
−→
C and

−→
D be ordered clauses.

−→
C ∼⊥

−→
D if and only if

−→
C and

−→
D

are alphabetical variants.

Proof. ⇒ : Suppose
−→
C ∼⊥

−→
D , then we have

−→
C �⊥

−→
D and

−→
D �⊥

−→
C . Thus,

there are substitutions θ1 and θ2 such that
−→
C θ1 is a subsequence of

−→
D relative

to ⊥ and
−→
Dθ2 is a subsequence of

−→
C relative to ⊥. Let

−→
C = L1 ∨ L2 ∨ · · · ∨ Ll

and
−→
D = M1 ∨M2 ∨ · · · ∨Mm. Therefore, there are strictly increasing selection

functions s1 and s2 such that for each (i, j) ∈ s1, Liθ1 = Mj and for each
(i, j) ∈ s2, Miθ2 = Lj . Given that s1 and s2 are strictly increasing functions,
there is a one-to-one mapping between literals of

−→
C and

−→
D such that m = n,

Liθ1 = Mi and Miθ2 = Li. Therefore it holds that
−→
C θ1 =

−→
D and

−→
Dθ2 =

−→
C .

Hence,
−→
C and

−→
D are alphabetical variants.

⇐ : Suppose
−→
C and

−→
D are alphabetical variants. Therefore there are substi-

tutions θ1 and θ2 such
−→
C θ1 =

−→
D and

−→
Dθ2 =

−→
C . Then it follows from Definition

12 that
−→
C �⊥

−→
D and

−→
D �⊥

−→
C and therefore

−→
C ∼⊥

−→
D . �

Lemma 4. Let K and Θ and mapping function c be defined as in Definition 13
and K, {k} ∈ K such that k �∈ K and θ ∈ Θ. Then, c(〈K ∪ {k}, θ〉) )⊥ c(K, θ).

Proof. Suppose c(〈K ∪ {k}, θ〉) �)⊥ c(K, θ). We know from Theorem 4 that
c(〈K∪{k}, θ〉) �⊥ c(K, θ), and therefore c(〈K∪{k}, θ〉) ∼⊥ c(K, θ). According to
Lemma 3, c(〈K∪{k}, θ〉) and c(K, θ) must be alphabetical variants, contradicting
k �∈ K. Thus, c(〈K ∪ {k}, θ〉) )⊥ c(K, θ). �

Lemma 5. Let K and Θ, � and mapping function c be defined as in Defi-
nition 13 and K ∈ K, {y/x}, θ ∈ Θ where x and y are distinct variables in
the k1th and k2th literals of

−→� respectively and k1th and k2th are in K. Then,
c(〈K, θ{y/x}〉) )⊥ c(K, θ).

Proof. Suppose c(〈K, θ{y/x}〉) �)⊥ c(K, θ). We know from Theorem 4 that
c(〈K, θ{y/x}〉) �⊥ c(K, θ), and therefore c(〈K, θ{y/x}〉) ∼⊥ c(K, θ). According
to Lemma 3, c(〈K, θ{y/x}〉) and c(K, θ) must be alphabetical variants. Thus,
{y/x} must be a renaming subsumption, i.e. x is either equal to y or it does not
occur in c(K, θ), contradicting the assumption. Thus, c(〈K, θ{y/x}〉) )⊥ c(K, θ).

�

Theorem 5. ρ1 is proper for 〈−→L⊥,�⊥〉.
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Proof. If 〈C′, θ′, K ′〉 ∈ ρ1(〈C, θ, K〉) is generated by item 1 in the definition of
ρ1, then

−→
C )⊥

−→
D follows from Lemma 4. If it is generated by item 2 in the

definition of ρ1, then
−→
C )⊥

−→
D follows from Lemma 5. �

Theorem 6. ρ1 is ideal for 〈−→L⊥,�⊥〉.

Proof. Locally finiteness follows from the definition of ρ1 and the fact that there
are finite number of literals and variables in ⊥. Completeness and properness
were proved in Theorem 3 and Theorem 5 respectively. �

In the following we study the morphism between 〈−→L⊥,�⊥〉 and 〈K × Θ,⊆〉.
According to Theorem 4, the mapping function c is an order-embedding. The
following theorem shows that c is also an order-isomorphism.

Theorem 7. The mapping function c : K×Θ → −→L⊥ as defined in Definition 13
is an order-isomorphism.

Proof. According to Theorem 4, the mapping function c is an order-embedding,
so we only need to prove that c is onto. Let

−→
C be an ordered clause in

−→L⊥,
then according to Definition 10, there exist substitution θ and selection function
s such that

−→
C θ �s −→⊥ . From Definition 13 we have

−→�θ� =
−→⊥ and there-

fore
−→
C θ �s −→�θ� and this implies

−→
C �s �θ�θ−1. Thus,

−→
C can be defined as−→

C = c(K, θ′) = (
∨

li|i ∈ K)θ′, where θ′ = θ�θ−1 and K is the range of the
selection function s. �

The proposition below follows directly from Theorem 7.

Proposition 1. Let K and Θ and mapping function c be defined as in Defi-
nition 13 and K1, K2 ∈ K and θ1, θ2 ∈ Θ. c(K, θ) ∼⊥ c(K ′, θ′) if and only if
〈K, θ〉 ∼ 〈K ′, θ′〉.

It is known that if a mapping is order-isomorphism it is also a lattice
isomorphism.

Theorem 8 ([3]). Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices and f : L → K. f is
order-isomorphism if and only if it is a lattice isomorphism.

According to this theorem the mapping c is a lattice isomorphism. Thus, it can
be shown that 〈−→L⊥,�⊥〉 and 〈K ×Θ,⊆〉 are two isomorphic lattices. This also
means that the mapping c is a lattice homomorphism. The proposition below
follows from c being a homomorphism.

Proposition 2. Let K and Θ and mapping function c be defined as in Defi-
nition 13 and K1, K2 ∈ K and θ1, θ2 ∈ Θ. Mapping c is joint-preserving and
meet-preserving that is:

1. lgg⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1 ∩K2, θ1 ∩ θ2〉)
2. mgi⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1 ∪K2, θ1 ∪ θ2〉)
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According to Proposition 2, the least general generalisation (lgg⊥) and the most
specific instance (mgi⊥) for 〈−→L⊥,�⊥〉 can be defined based on the the joint
and the meet operations for 〈K×Θ,⊆〉. Note that if two lattices are isomorphic
then for practical purposes they are identical and differ only in the notation of
their elements. The morphism between 〈−→L⊥, lgg⊥, mgi⊥〉 and 〈K × Θ,∩,∪〉 is
important from a practical point of view. For example, the least general gen-
eralisation (lgg) of clauses, introduced by Plotkin [9], is an important operator
for ILP. However, in the general subsumption order the construction of lgg can
be inefficient (e.g. the cardinality of the lgg of two clauses is bounded by the
product of the cardinalities of the two clauses). On the other hand, efficient op-
erators can be implemented for least generalisation and greatest specialisation
in the sequential subsumption order relative to a bottom clause.

6 Subsumption Order Relative to ⊥

The purpose of the previous sections was to characterise Progol’s refinement and
the subsumption sub-lattice which is searched by Progol. We defined sequential
subsumption order relative to ⊥ and studied the properties of this special case of
subsumption. In this section we show how some limitations of Progol’s refinement
operator can be addressed by relaxing conditions of sequential subsumption. In
particular we address the first type of incompleteness, which is believed to be
more problematic than the second type of incompleteness[1]. In this section we
define a refinement operator which is less restricted than ρ1. As demonstrated
in section 3, the first type of Progol’s refinement incompleteness is due to the
choice of ordering of literals in ⊥ and the fact that clauses are considered as
subsequences of ⊥. This condition was embedded in the definitions of the se-
quential subsumption and the refinement operator ρ1. However, more relaxed
conditions can be defined for subsumption and refinement operators relative to
⊥. Note that in the previous definitions and theorems we only needed to assume
that the selection functions are injective so that we can encode every literal of a
clause by a k index from ⊥. Therefore a less restricted ordering can be defined
by using a selection function which is injective rather than strictly increasing.

Definition 16 (Ordered subset). Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D =

M1 ∨M2 ∨ · · · ∨Mm be ordered clauses.
−→
C is an ordered subset of

−→
D , denoted

by
−→
C ⊆s −→D , if there exists an injective selection function s such that for each

(i, j) ∈ s, Li = Mj.

By choosing s to be an injective function, we make sure that clauses can still be
encoded by a set of k indexes. However, these clauses do not need to follow the
same order as literals in ⊥. In the following, we give new definitions for the map-
ping function and the refinement operator for this less restricted subsumption
order.
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Definition 17 (L⊥). Let
−→⊥ be the bottom clause as defined in Definition 2.

−→
C

is in L⊥ if and only if there exists a substitution θ such that
−→
C θ is an ordered

subset of
−→⊥ .

Definition 18 (Mapping function c′). Let
−→⊥ and L⊥ be as defined in Defi-

nition 17, n be the number of literals in ⊥. Let
−→� , θ�, θ, Θ, K be as defined in

Definition 13. The mapping function c′ : K×Θ → L⊥ is defined as follows:

c′(〈K, θ〉) = (
∨
i∈K

li|li is the ith literal of
−→�)θ.

In the definition of c′, unlike in c, literals li do not need to follow the same order
as literals in

−→� . In the following we define a refinement operator, ρ2, which is
similar to ρ1 but uses the mapping function c′ instead of c.

Definition 19 (ρ2). Let
−→⊥ and L⊥ be as defined in Definition 17,

−→
C be an

ordered clause in L⊥, n be the number of literals in ⊥, k be a natural number,
1 ≤ k ≤ n,

−→� , Θ and K be defined as in Definition 18. Let K ∈ K, θ ∈ Θ,−→
C = c′(〈K, θ〉) and the mapping function c′ be defined as in Definition 18.
〈
−→
C′, K ′, θ′〉 is in ρ2(〈

−→
C , K, θ〉) if and only if

−→
C′ = c′(〈K ′, θ′〉) and either

1. K ′ = K ∪ {k}, k �∈ K and θ′ = θ or
2. K ′ = K, θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct variables

in the k1th and k2th literals of
−→� respectively and k1th and k2th are in K ′.

The following example demonstrates how the first type of incompleteness (in
Example 1) is addressed in ρ2.

Example 7. Let
−→
C and

−→⊥ be as defined in Example 1. Progol’s refinement
cannot generate C (i.e. C �∈ ρ∗(�))) and also 〈−→C , K, θ〉 �∈ ρ∗1(〈�, ∅, ∅〉). How-
ever, Table 1 shows that 〈−→C , K, θ〉 ∈ ρ∗2(〈�, ∅, ∅〉), where K = {1, 2, 5, 3} and
θ = {V4/V1, V12/V5, V13/V2, V6/V14, V7/V2} and

−→� is the clause:

mult(V1, V2, V3)← dec(V4, V5), plus(V6, V7, V8), plus(V9, V10, V11),
mult(V12, V13, V14), mult(V15, V16, V17). �

This example shows that ρ2 can address the incompleteness of ρ demonstrated
in Example 1. However, ρ2 is also more redundant than ρ (e.g. different permu-
tations of the same clause could be generated). On the other hand, as mentioned
in Section 3, a refinement operator cannot be both complete and non-redundant.
Given that in the new definitions the selection functions are injective, we can
encode every literal of a clause by a k index from ⊥. Therefore, the properties
mentioned in Section 5 for the mapping function c also hold for c′. By different
conditions on the selection functions in Definition 16 we can get different kind
of subsumption orders. For example, if the selection function is monotonically
increasing then we will have a subsumption order which allows each literal of ⊥
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Table 1. Application of ρ2 in Example 7

C′ θ′ K′

� ∅ ∅
mult(V1, V2, V3) ← ∅ {1}
mult(V1, V2, V3) ← dec(V4, V5) ∅ {1, 2}
mult(V1, V2, V3) ← dec(V1, V5) {V4/V1} {1, 2}
mult(V1, V2, V3) ← dec(V1, V5), mult(V12, V13, V14) {V4/V1} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V13, V14) {V4/V1, V12/V5} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14) {V4/V1, V12/V5, V13/V2} {1, 2, 5}
mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2} {1, 2, 5, 3}
plus(V6, V7, V8)

mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2, {1, 2, 5, 3}
plus(V14, V7, V8) V6/V14}

mult(V1, V2, V3) ← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2, {1, 2, 5, 3}
plus(V14, V2, V8) V6/V14, V7/V2}

to be selected more than once3. This will address the second type of Progol’s
incompleteness mentioned before. However, the selection functions are not in-
jective and therefore the encoding and the morphism we described in this paper
are not applicable.

7 Related Work and Discussion

Progol’s refinement operator and its incompleteness with respect to the general
subsumption order were initially discussed in [7]. The purpose of the present
paper was to characterising Progol’s refinement space and to give an analysis of
refinement operators for this space. In a previous attempt, the authors of [1] sug-
gested weak subsumption for characterising Progol’s refinement space. However,
as we have shown in this paper, weak subsumption cannot capture all aspects
of Progol’s refinement. They also considered refinement operators which, as the
operators considered in this paper, are based on Laird’s operator. In this paper
we used an encoding of clauses with respect to a bottom clause. In this encoding
each clause is represented by a tuple 〈K, θ〉 and it can be constructed from

−→� as
described in Definition 13. This idea was first used in [12] where the substitution
θ is encoded as a binding matrix which maps the variables of

−→� to the variables
of a clause with respect to the bottom clause. The morphism between the lattice
of variable bindings and the subsumption lattice was also studied in [12]. A sub-
sumption relation for ordered clauses (i.e. ordered subsumption) is studied in [4].
It is shown that, in the defined subsumption, the least generalisation of two or-
dered clauses does not exist and that the subsumption testing for ordered clauses
is NP-complete. The subsequence relation considered in [4], assumes a mapping
function which is monotonically increasing (rather than strictly increasing). As
mentioned in the previous section, this leads to a different subsumption from the
one considered in this paper (i.e. sequential subsumption) and the results from
this paper are not applicable.
3 In this case, Definition 16 will be identical to the definition of subsequence considered

in [4].
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8 Conclusions

In this paper we have studied refinement operators for a hypotheses space
bounded by a most specific (bottom) clause. We introduced a subsumption
order relative to a bottom clause and demonstrated how Progol’s refinement
can be characterised with respect to this order. We also proved that ideal re-
finement operators exist for this order. It was shown that efficient operators
can be defined for least generalisation and greatest specialisation in the sub-
sumption order relative to a bottom clause. The theoretical results presented in
this paper can be applied to ILP systems which use Inverse Entailment (IE) as
well as any other ILP system which uses a bottom clause to restrict the search
space.
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A Progol’s Refinement Operator ρ0

The following definition describes a bottom clause ⊥i for a depth-bounded mode
language Li(M) as defined in [7]. In this paper, we refer to ⊥i and Li(M) as ⊥
and L respectively.

Definition 20. Most-specific clause ⊥i. Let h, i be natural numbers B be a
set of Horn clauses, e = a ← b1, .., bn be a definite clause, M be a set of mode
declarations containing exactly one modeh m such that a(m) � a and ⊥ be the
most-specific (potentially infinite) definite clause such that B ∧ ⊥ ∧ e !h �. ⊥i

is the most-specific clause in Li(M) such that ⊥i � ⊥.

The refinement operator ρ defined in [7] allows more than one literal in a clause
to be mapped to the same literal in ⊥. However, in Progol’s implementation of
the refinement operator, index k is incremented after each step for the sake of
efficiency. This means each literal of ⊥ can be considered only once. In the fol-
lowing, we give a revised definition (ρ0) which describes the refinement operator
as implemented in Progol. This also includes a revised definition for function δ.

Definition 21. Progol refinement operator ρ0. Let h, i, B, e, M and ⊥i be
defined as in Definition 20 and let n be the cardinality of ⊥i. Let k be a natural
number, 1 ≤ k ≤ n. Let C be a clause in Li(M) and θ be a substitution such that
Cθ ⊆ ⊥i. Below a literal l corresponding to a mode ml in M is denoted simply
as p(v1, .., vm) despite the sign of ml and function symbols in a(ml). A variable
is splittable if it corresponds to a +type or -type in a modeh or if it corresponds
to a -type in a modeb. 〈C′, θ′, k′〉 is in ρ0(〈C, θ, k〉) if and only if either

1. C′ = C ∨ l, k′ = k + 1, k < n and 〈l, θ′〉 is in δ(θ, k) and C′ ∈ Li(M) or
2. C′ = C, k′ = k + 1, θ′ = θ and k < n.

〈p(v1, .., vm), θ′m〉 is in δ(θ, k) if and only if lk = p(u1, .., um) is the kth literal of
⊥i, θ′0 = θ and θ′j for each j, 1 ≤ j ≤ m is defined as follows:

1. if vj/uj ∈ θ′j−1 then θ′j = θ′j−1 or
2. if uj is splitable then θ′j = θ′j−1 ∪ {vj/uj} where vj is a new variable not in

dom(θ′j−1).

In Definition 21, the refinement operator ρ0, as ρ in [7], is defined for clauses
in Li(M). However, ρ0 can be also defined for clauses in

−→L⊥ if we let C and
C′ to be ordered clauses in

−→L⊥ and
−→
C θ be a subsequence of the bottom clause
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(rather than a subset). In this case, it can be shown that ρ0 is weakly complete
for 〈−→L⊥,�⊥〉.

Theorem 2. ρ0 is weakly complete for 〈−→L⊥,�⊥〉.

Sketch proof. We need to show that ρ∗0(〈�, ∅, 1〉) =
−→L⊥. We show that for each

−→
C ∈ −→L⊥, there exists a ρ0-chain from � to

−→
C′ where

−→
C′ and

−→
C are alphabetical

variants. The proof is by induction on i, the number of literals in
−→
C . If i = 0

then
−→
C = �, and the empty chain satisfies the theorem. Assume for some j,

0 ≤ j < i, that the lemma is true. This implies that there is a ρ0-chain from
� to

−→
C j such that

−→
C j is an ordered clause in

−→L⊥ with j literals added from
−→
C . Therefore, there is a substitution θ such that

−→
C jθ is a subsequence of ⊥

and we assume that the j-th literal of
−→
C j is mapped to the k-th literal of ⊥.

Let
−→
C j+1 =

−→
C j ∨ l, where l is the leftmost literal of

−→
C which is not in

−→
C j

and l is mapped to the k′-th literal of ⊥, where k < k′ (because
−→
C j and

−→
C j+1

are sequential generalisations of ⊥). Then there exists a ρ0-chain from 〈−→C j , θ, k〉
to 〈−→C j , θ, k

′〉 by repeatedly selecting item 2 in the definition of ρ0 in order to
skip k′ − k literals of ⊥. According to the definition of δ, there exists 〈l′, θ′〉 in
δ(θ, k′) such that, by construction, l and l′ are variants. Therefore, by selecting
item 1 in the definition of ρ0,

−→
C′

j+1 =
−→
C j ∨ l is a variant of

−→
C j+1 =

−→
C j ∨ l,

where 〈
−→
C′

j+1, θ
′, k′ + 1〉 ∈ ρ0(〈

−→
C j , θ, k

′〉). Thus, there is a ρ0-chain from � to a
a variant of

−→
C j+1 and this completes the proof. �
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Abstract. In various application domains, data can be represented as
bags of vectors. Learning functions over such bags is a challenging problem.
In this paper, a neural network approach, based on cascade-correlation
networks, is proposed to handle this kind of data. By defining special ag-
gregation units that are integrated in the network, a general framework to
learn functions over bags is obtained. Results on both artificially created
and real-world data sets are reported.

1 Introduction and Context

In general, two types of approaches to relational data mining can be distin-
guished. In the first type, the propositionalization approach, each data element
is summarized into a vector of fixed length. We will refer to the components of
this vector as features. In the second type, the direct approach, no summariza-
tion is performed and structured data elements are handled directly. A search
is performed through a large hypothesis space, which may contain for instance
(sets of) logical clauses.

The hypotheses searched by a relational learner could themselves be consid-
ered features of the data, i.e., the search for a suitable hypothesis can be seen as
a search in a feature space. For instance, in the context of ILP, typically the final
model built is a set of clauses, where the clauses are learned one by one. The
single clauses could be said to be boolean features, combined into a disjunction.

From this point of view, propositionalization approaches are in principle equally
powerful as direct approaches. In practice, including a separate feature for each
clause in the search space in the fixed-size vector is often not feasible because the
feature space is too large and might even be infinite. Direct approaches can be seen
as “lazy propositionalization” approaches: they perform a greedy search through
the feature space, gradually constructing relevant features.

If we look at the kind of features that are constructed by a relational learner,
an essential property of these features is that they map sets of objects to a single
scalar value. Such functions are called aggregate functions and they play a key role
in relational learners. For instance, in ILP, if we have a clause happy father(X) :-
child(Y,X), the “feature” constructed is essentially of the form ∃ y : Child(y, x),
which tests if the set of all y’s related to x through the Child relation is empty
or not.
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As has been pointed out by Blockeel and Bruynooghe [1], the features con-
structed by relational learning systems are generally of the form F(σC(S)) with
S a set of objects, C a condition defined over single objects, σ the selection op-
erator from relational algebra, and F an aggregate function, which maps a set to
a scalar. In the above clause, S is the set of children of x, C is true, and F is the
“there exists” operator (∃). For the clause happy father(X) :- child(Y,X),
age(Y,A), A < 12, S and F are the same, but C is now a condition on the age
of the children.

Blockeel and Bruynooghe further pointed out that ILP systems typically con-
struct structurally complex conditions but always use the same, trivial, aggregate
function, namely ∃. The importance of using more complex aggregate functions
has been recognized by many people [2,3]. Most systems that handle such com-
plex aggregate functions follow the propositionalization approach. The reason for
this is that the structure of the search space of features of the form F(σC(S))
becomes much more complex and difficult to search when F can be something
else than ∃ [4]. But to keep the propositionalization approach feasible, a limited
set of F functions still needs to be used, and the number of different C consid-
ered for σC must remain limited. For instance, Krogel and Wrobel [3] allow a
single attribute test in C, but no conjunctions.

Given the limitations of the propositionalization approach, it is useful to study
how direct approaches could include aggregate functions other than ∃. More re-
cently, methods for learning relevant features of the form F(σC(S)) have been
proposed. Vens, Van Assche et al. [5,6] proposed a random forest approach that
avoids the problems of searching a complex-structured search space, while Vens
[4] studied the monotonicity properties of features of the form F(σC(S)) and
showed how efficient refinement of such features is possible for the most com-
monly occurring aggregate functions.

In parallel, Uwents et al. studied to what extent subsymbolic concepts on
relational data can be learned using neural network approaches. Recurrent neural
networks were first proposed to learn the aggregate features, leading to the
concept of relational neural networks [7]. While a regular network maps one
input vector to an output vector, recurrent networks can map a sequence of
input vectors to a single output vector. This property was exploited to handle
sets of vectors, the elements of which were input in random order in the network.

From the explanation above, it is clear that learning aggregate features from
sets is a crucial part of any relation learner. In this paper, we therefore focus on
the subsymbolic learning of aggregate functions as such, without considering the
possibility of having many different relationships. This means that the general
relational learning setting is restricted to the situation where there is just a
single one-to-many relationship. This relationship results in bags of vectors with
associated target vectors. This resembles the multi-instance setting, because in
multi-instance learning, one also deals with data sets containing a bag of vectors
for each data instance. However, in multi-instance learning the hypothesis that
should be learned has some restrictions. Each bag is classified as positive or
negative but this classification can be reformulated in terms of a classification
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of the individual vectors in the bag. If all vectors are negative, the bag as a
whole will also be classified as negative. If there is at least one positive vector,
the bag will be classified as positive. Learning aggregate functions in general is
more complicated because these restrictions do no longer apply and the class
of possible aggregate functions is very broad and diverse. In this paper, we will
consider the use of neural networks for learning this kind of general aggregate
functions. For the multi-instance setting, the use of neural networks has been
explored before by Ramon and De Raedt [9]. They make use of a softmax function
in the network, similar to what will be used in our aggregate cascade-correlation
networks as explained in section 2.2.

The remainder of the paper is structured as follows. In section 2 we review
cascade-correlation networks and we adapt these networks so that they can rep-
resent aggregation functions, this by introducing a limited number of aggregation
units in them. A training procedure for such networks is also described. In section
3 we experimentally evaluate the method, to conclude in section 4.

2 Aggregate Cascade-Correlation Networks

Cascade-correlation networks are a special kind of neural networks, constructed
one unit at a time. In the next subsection, the original cascade-correlation al-
gorithm will be discussed. After that, a number of new units, capable of ag-
gregating, will be presented. These units will then be integrated in an adapted
version of cascade-correlation, resulting in a network structure that can learn
concepts with aggregation. The resulting networks are called aggregate cascade-
correlation networks (ACCNs).

2.1 The Original Cascade-Correlation Network

The idea behind the original cascade-correlation algorithm [10] is to learn not
only the weights, but also the structure of the network at the same time. This is
done in a constructive way, meaning that only one neuron at a time is trained and
then added to the network. One starts with a network without any hidden unit,
and then hidden neurons are added, one by one, until some stopping criterion
is satisfied. Once a hidden neuron has been added to the network, its weights
remain fixed throughout the rest of the procedure. This also means that, besides
the actual input vector, the output values of these existing hidden units can be
used as extra inputs for any new hidden neuron. At the output, a linear function
can be used. A schema of the network is shown in figure 1. For an input vector
xp, the output values op,k of the network are then computed as

ok(xp) =
N∑

i=1

vk,ixp,i +
H∑

i=1

vk,ihi(xp) + vk,N+H+1 (1)

hi(xp) = σ(ξi(xp)) (2)
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ξi(xp) =
N+i∑
j=1

wi,jθi,j(xp) (3)

θi(xp) = [xp,1, . . . , xp,N , h1(xp), . . . , hi−1(xp), 1] (4)

with N the number of inputs and H the number of hidden units, while wi,j and
vk,i are the weights for the hidden and the output units.

Inputs

+1

Output

Fig. 1. Schema of the feedforward cascade-correlation network

The training of the network is done in two alternating phases. Before a new
hidden neuron is added, its weights are trained while keeping the weights of all
other hidden units fixed. This training is not done by minimizing the squared
error between target and output, but by maximizing the correlation with the
residual error. The residual error is defined as the difference between the actual
target value and the output of the existing network, before adding the new
neuron. Instead of the real correlation, a slightly different measure S is taken, in
which some normalization factors are omitted and the absolute value is taken:

S =
K∑

k=1

|sk| (5)

sk =
P∑

p=1

(
hH+1(xp)− hH+1(xp)

)(
ek(xp)− ek(xp)

)
(6)

ek(xp) = ok(xp)− tp,k (7)

with K the number of outputs, P the number of patterns in the training data,
hH+1 the new candidate unit and tp the target vector for pattern p. When this S
value is maximized, the output of the new hidden neuron will correlate well with
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the residual error. The key idea here is that a unit that correlates well with the
residual error, will help to reduce the output error when added to the network.
The maximization is done by computing the gradient and performing some form
of gradient descent. This gradient is computed as follows:

∂S

∂wi
=

K∑
k=1

P∑
p=1

sign(sk)σ′(ξH+1(xp)) (ek(xp)− ek(xp)) θH+1,i(xp) (8)

Instead of training only one candidate neuron at a time, a pool of neurons,
initialized with random weights, can be trained. At the end, the best one is
selected. This increases the chance that a good candidate will be found. Once
the best candidate is selected and added to the network, the output weights for
the updated network can be trained. If a linear function is used at the outputs,
the output weights can be obtained by simple linear regression.

2.2 Cascade-Correlation with Aggregation Units

The concept of cascade-correlation networks can be extended to networks for
learning aggregate functions. The crucial difference is that instead of the simple
hidden neurons, units that can process bags are used. For the rest, the network
and the training of it works in the same way as for the feedforward networks. The
data set now consists of bags bp = {xp,1, . . . , xp,m}, where xp,i are vectors of size
N , with associated target vectors tp. Because the input is a bag of vectors instead
of one single vector, it can no longer be used as direct input for the output units,
and so this is dropped from the equation. Each input bag bp = {xp,1, . . . , xp,m}
of a pattern p will be processed by the hidden units. Each time a vector of the
bags has been processed, an intermediate output value for the hidden units can
be computed, yielding a sequence of m values for each hidden unit. The final
value is used by the output units, but the whole sequence of values can also be
used by new hidden units. A schema of an aggregate cascade-correlation network
for 2 input vectors is shown in figure 2. The network then becomes:

ok(bp) =
H∑

i=1

vk,ihi,m(bp) + vk,H+1 (9)

hi,j(bp) = gi({ξi(xp,1), . . . , ξi(xp,j)}) (10)

ξi(xp,j) =
N+i∑
l=1

wi,lθi,l(xp,j) (11)

θi(xp,j) = [xp,1, . . . , xp,N , h1,j(xp), . . . , hi−1,j(xp), 1] (12)

with gi a special function. Different functions can be used for gi, as long as
they perform some kind of aggregation. One could take the sum or the max
function for instance. Another possibility is to use a locally recurrent neuron.
The only condition imposed on the gi function is that it must be derivable to
allow gradient training. Different types of units can easily be combined in the
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Vector 1

+1

Output

A

A

Vector 2

Fig. 2. Schema for an aggregate cascade-correlation network with 2 input vectors

network. For every new unit, several candidates of different types can be trained
and the best one selected and added to the network. The four different types
that will be considered here, are explained below.

1. The simplest type of unit is probably the sum unit:

gsum
i (bp) =

m∑
j=1

σ(ξi(xp,j)) (13)

∂

∂bp
gsum

i (bp) =
m∑

j=1

σ′(ξi(xp,j)) (14)

2. Somewhat more complicated is the max unit because the maximum func-
tion is not easily derivable. To circumvent this, one could use the softmax
function. This is the same approach as in [9]. The smx unit is then defined
as:

gsmx
i (bp) =

1
C

log

⎛
⎝ m∑

j=1

eC·σ(ξi(xp,j))

⎞
⎠ (15)

∂

∂bp
gsmx

i (bp) =
m∑

j=1

eC·σ(ξi(xp,j))∑m
l=1 eC·σ(ξi(xp,l))

σ′(ξi(xp,j)) (16)

C is a constant and the larger the value of C, the closer this function will
approximate the real max function.
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3. Instead of choosing a value for C that is large enough to give a good approx-
imation, one could take the limit for C going to infinity, which gives the real
max function and its derivative:

max{x1, . . . , xn} = lim
C→∞

1
C

n∑
i=1

eC·xi (17)

∂

∂xj
max{x1, . . . , xn} =

{
1 if xj = max{x1, . . . , xn}
0 otherwise

(18)

A possible disadvantage with this exact function is that the derivative is not
continuous anymore, which can deteriorate learning. The corresponding max
unit then becomes:

gmax
i (bp) = max({σ(ξi(xp,1)), . . . , σ(ξi(xp,k))}) (19)

∂

∂bp
gsmx

i (bp) = σ′(ξi(xp,l∗)) with σ(ξi(xp,l∗)) = gmax
i (bp) (20)

4. The fourth type of unit considered here, is the locally recurrent unit. This is
a standard feedforward unit with one recurrent connection with itself added.
This lrc unit is defined as:

glrc
i (bp) = σ(ξi(xp,k) + wrg

lrc
i (bp\{xp,k})) (21)

Gradient computation for this type of unit is done using backpropagation
through time [11].

New types of units could easily be invented if necessary, but only these four
will be considered in the rest of the paper.

2.3 Aggregate Cascade-Correlation Training

With all parts of the aggregate cascade-correlation network explained, it only
remains to discuss the training of the network in more detail. Each time a new
unit should be added to the hidden layer, a pool of units is created of the four
types discussed in the previous subsection. Weights are initialized randomly.
After that, all units in the pool are trained for a number of iterations, similar
to backpropagation. This training is basically a gradient ascent, maximizing the
correlation with the outputs as given in formula 5. The computation of the
gradient depends of course on the type of unit. The gradient ascent itself is
actually done by using resilient propagation, as described in [12]. This method
has the advantage that the step size is determined automatically and convergence
is faster than for a fixed step size. The basic idea is to increase the step size when
the sign of the gradient remains the same, and decrease the step size when the
sign changes.

When all units in the pool have been trained, the best one is chosen. In
this case, the best unit is the one with the highest correlation. To be able to
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compare units of different types with each other, the absolute value of the real
correlation has to be computed, and not the S-value from formula 5 in which
some normalization constants were omitted. When the unit with the highest
correlation has been chosen, it is installed in the network and the output weights
have to be learned again. Because linear activation functions are used for the
output units, the output weights can be determined with least squares linear
regression.

In the ideal case, when there is enough data available, a validation set can
be used to determine when to stop adding new units. If this is difficult, there
is also an alternative stopping criterion. Typically, the first units added to the
network will have a high correlation. When more units are added, the correlation
will decrease until no more reduction can be made. One can stop training when
the correlation is below a certain threshold or does not decrease significantly
anymore.

3 Experiments

In this section, a number of experimental results will be discussed. First, a series
of experiments is carried out on artificially created data sets. After that, the
method is evaluated on some real-world data sets.

3.1 Simple Aggregates

A simple experiment to examine the capacity of the aggregate cascade-correlation
network, is to create artificial data with predefined aggregate functions and train
the networks on it. The data consists of bags with a variable number of elements.
Each element of the bag is a vector with five components. Only the first or the first
and second component are relevant for the target value, depending on the aggre-
gate function under consideration. The values of these components are randomly
generated, but in such a way that the target values are uniformly distributed over
the possible target values. All the other components are filled with uniformly dis-
tributed random numbers from the interval [−1, 1]. It is very likely that he num-
ber of vectors in the bags influences the difficulty of the learning task, so different
sizes are tested. The data sets denoted as small contain 5 to 10 vectors per bag,
the medium data sets 20 to 30 and the large ones 50 to 100. Each data set con-
tains 3000 bags. A range of different aggregate functions are used to construct the
data sets:

1. count: the target is the number of vectors in the bag.
2. sum: the target is the sum of all values of the first component of the bag

vectors.
3. max: the target is the maximum value of the first component of the bag

vectors.
4. avg: the target is the average value of the first component of the bag vectors.
5. stddev: the target is the standard deviation of the values of the first com-

ponent of the bag vectors.
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6. cmpcount: the target is the number of bag vectors for which the value of
the first component is smaller than the value of the second component.

7. corr: the target is the correlation between the first two components of the
bag vectors.

8. even: the target is one if the number of positive values for the first compo-
nent is even, and zero if it is odd.

9. distr: the target is one if the values of the first component come from a
Gaussian distribution, and zero if they are from a uniform distribution.

10. select: the target is one if at least one of the values of the first component
lies in a given interval, and zero otherwise.

11. conj: the target is one if there is at least one vector in the bag for which the
the first and the second component lie in a certain interval.

12. disj: the target is one if there is at least one vector in the bag for which the
first or the second component lies in a certain interval.

The first 7 data sets have a numerical target, the others a nominal target.
In case of a nominal target, the number of positive and negative examples are
equal. The experiments are done using 10-fold cross-validation. One fold is used
as test set, 7 folds are used for training and 2 folds are used as validation set
to determine when to stop adding units. The maximum number of hidden units
is limited to 10. The number of candidate units trained in every step is 20,
which means that there are five units of every type. Each unit is trained for
500 iterations, which should be more than enough to have converged to optimal
weights. For the data sets with nominal target, the accuracy is reported and
for the sets with numerical targets the mean squared error is given. Standard
deviation is reported as well. The results are summarized in table 1.

From the results, it is clear that most functions can be learned very well. Only
the even function is really impossible to learn it seems. For the distr function,
the number of vectors must be large to be able to learn it well. This makes sense
because it is easier to say whether a bag of values comes from a normal or uniform
distribution if the bag is larger than when it is rather small. In table 2, results are
given using fully recurrent networks, similar to what is used in relational neural
networks [7]. Compared with these results, it is clear that ACCNs perform better.
One of the major problems with these recurrent networks, is the decreasing
performance on larger bags. If we look at the results for the select data sets for
instance, then the accuracy on the data set with small bags is still reasonable for
the recurrent network, although the accuracy for the ACCNs is better. But for
the data sets with larger bags, the accuracy goes down for the recurrent networks
while it remains about the same for the ACCNs. Overall, it is clear that ACCNs
are a better choice than the recurrent networks.

3.2 Trains

The trains data sets are also artificially created data sets containing a number
of trains. Every train consists of a number of cars, carrying some load. Some of
the trains are eastbound, the others are westbound. The direction of the trains
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Table 1. Results for the simple aggregate data sets with aggregate cascade-correlation
networks. Accuracies or mean squared errors are given, depending on whether the
target is numeric or nominal, together with the standard deviations. The columns
small, medium and large refer to the size of the bags in the data sets.

small medium large
M

S
E

count 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
sum 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
max 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
avg 0.04 (0.03) 0.01 (0.01) 0.01 (0.01)
stddev 0.02 (0.02) 0.01 (0.01) 0.00 (0.00)
cmpcount 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
corr 0.04 (0.03) 0.02 (0.02) 0.01 (0.01)

a
cc

u
ra

cy

even 51.59 (0.05) 51.10 (0.04) 51.34 (0.10)
distr 66.48 (0.05) 77.97 (0.07) 84.23 (0.09)
select 99.21 (0.07) 99.13 (0.10) 98.83 (0.10)
conj 100.00 (0.04) 100.00 (0.00) 99.89 (0.10)
disj 99.13 (0.06) 98.57 (0.10) 96.54 (0.11)

Table 2. Results for the simple aggregate data sets with fully recurrent networks. Ac-
curacies or mean squared errors are given, depending on whether the target is numeric
or nominal, together with the standard deviations. The columns small, medium and
large refer to the size of the bags in the data sets.

small medium large

M
S
E

count 0.06 (0.10) 0.26 (0.01) 0.23 (0.01)
sum 0.00 (0.00) 0.09 (0.10) 0.23 (0.01)
max 0.02 (0.00) 0.01 (0.00) 0.01 (0.01)
avg 0.02 (0.00) 0.01 (0.01) 0.01 (0.01)
stddev 0.03 (0.00) 0.04 (0.00) 0.04 (0.01)
cmpcount 0.02 (0.01) 0.01 (0.01) 0.11 (0.07)
corr 0.07 (0.01) 0.08 (0.04) 0.04 (0.01)

a
cc

u
ra

cy

even 52.64 (0.01) 50.19 (0.02) 50.23 (0.01)
distr 51.62 (0.05) 63.49 (0.02) 58.70 (0.02)
select 90.55 (0.03) 63.47 (0.03) 50.42 (0.02)
conj 94.43 (0.01) 68.09 (0.10) 49.11 (0.05)
disj 72.08 (0.03) 51.24 (0.05) 50.32 (0.02)

is what has to be learned and this target concept is based on the properties of
the cars of a train and their loads. The cars of the train constitute a bag for
each train. A data generator [13] for this train problem was used to create 12
data sets with different properties. Sets 1 to 4 consist of short trains, having 2
to 6 cars. Data sets 5 to 8 are similar to sets 1 to 4, except that they contain
longer trains. Each of these trains consists of 20 to 29 cars. The used concepts
are the same as for sets 1 to 4, except that the numbers in the aggregations are
adapted to the longer length of the trains. Data sets 9 to 12 contain noisy data.



Learning Aggregate Functions with Neural Networks 325

This means that a number of samples have been mislabeled. The used concepts
for the different data sets are as follows:

1. Trains having at least one circle load are eastbound, the others are west-
bound.

2. Trains having at least one circle or rectangle load and at least one car with
peaked roof or 3 wheels are eastbound, the others are westbound.

3. Trains having more than 8 wheels in total are eastbound, the others are
westbound.

4. Trains having more than 3 wheels in total and at least 2 rectangle loads and
maximum 5 cars are eastbound, the others are westbound.

5. Same concept as for set 1.
6. Same concept as for set 2.
7. Trains having more than 53 wheels in total are eastbound, the others are

westbound.
8. Trains having more than 45 wheels in total and at least 10 rectangle loads

and maximum 27 cars are eastbound, the others are westbound.
9. Same concept as for set 1, but with 5% noise.

10. Same concept as for set 1, but with 15% noise.
11. Same concept as for set 3, but with 5% noise.
12. Same concept as for set 3, but with 15% noise.

The training setup is the same as for the simple aggregate data sets. The
results for ACCNs and fully recurrent networks are given in table 3. It is clear
that most concepts can be learned well with ACCNs. Most of the data sets
without noise have an accuracy very close to 100%. Only for set 8, which has the
most difficult concept, is it impossible to get close to perfect accuracy. For the
data sets with noise, the accuracies are all close to 100% minus the percentage of
noise, which means that the method is noise-resistant. Compared with the fully
recurrent networks, the results for ACCNs are always better again. Sometimes
the difference is quite spectacular. Also for these data sets, the size of the bags
has an important influence on the accuracy for the recurrent networks.

3.3 Musk

Musk is a well-known multi-instance data set [14]. Each data instance stands for
a molecule, represented by a bag of all its possible conformations. A conformation
is described by 166 numerical features. The molecules have to be classified as
musk or non-musk. The data set consists of two parts. The first part contains
92 molecules, the second part 102. In each bag, there are between 2 and 40
conformations for the first part, and between 1 and 1044 for the second part.

Experiments were carried out using 10-fold cross-validation. For the ACCNs,
a pool of 20 neurons and 500 training iterations are used in every step. The value
of the correlation is used as stopping criterion as described above. The results
for the musk data sets can be found in table 4. The accuracies for ACCNs are
not bad but not that excellent either compared with the other methods. Some
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Table 3. Average accuracy and standard deviation using 10-fold cross-validation for
the trains data sets. ACCNs stands for aggregate cascade-correlation networks and
FRNs for fully recurrent networks.

ACCNs FRNs

1 99.8 (0.2) 99.7 (0.1)
2 100.0 (0.0) 97.1 (0.2)
3 100.0 (0.0) 99.9 (0.1)
4 98.7 (0.4) 92.7 (0.3)
5 99.7 (0.6) 92.5 (0.2)
6 99.4 (0.5) 73.9 (0.3)
7 99.3 (0.6) 51.3 (0.5)
8 84.6 (8.4) 71.0 (0.3)
9 95.8 (0.3) 93.6 (0.2)
10 85.7 (0.1) 81.7 (0.4)
11 95.6 (0.2) 93.0 (0.3)
12 85.3 (0.2) 82.0 (0.3)

Table 4. Accuracies and 95% confidence intervals for the musk data sets using 10-fold
crossvalidation. Results for other methods than ACCN are obtained from [14].

musk 1 musk 2

iterated discrim APR 92.4 [87.0-97.8] 89.2 [83.2-95.2]
GFS elim-kde APR 91.3 [85.5-97.1] 80.4 [72.7-88.1]
GFS elim-count APR 90.2 [84.2-96.3] 75.5 [67.1-83.8]
GFS all-positive APR 83.7 [76.2-91.2] 66.7 [57.5-75.8]
all-positive APR 80.4 [72.3-88.5] 72.6 [63.9-81.2]
backpropagation 75.0 [66.2-83.8] 67.7 [58.6-76.7]
C4.5 (pruned) 68.5 [40.9-61.3] 58.8 [49.3-68.4]

ACCN 85.3 [83.1-87.5] 75.5 [72.6-78.4]

of these methods were specifically designed for multi-instance problems while
ACCNs are more general. This could make the multi-instance methods better
suited for this task. On the other hand, ACCNs might also suffer from poor
learning because of relatively few data or skewness in the data. The networks
are all very small, in most cases with just one hidden unit. If one looks at the
type of unit selected, then this is almost always a max or smx unit. This is the
most logical choice in case of a multi-instance problem.

3.4 Thioredoxin-Fold Proteins

In this classification task, proteins have to be classified as belonging to the
Thioredoxin-fold family or not [15]. It is difficult to do this based on the primary
sequence of the proteins, for instance by using hidden Markov models, because
there is a low conservation of the primary sequence in this family of proteins.
One approach to deal with this problem has been to transform the data into
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bags of vectors. In [15], this transformation is done in three steps. First, the pri-
mary sequence motif, which is known to exist in all Thioredoxin-fold proteins, is
identified. Around this motif, aligned subsequences are extracted. Finally, these
windows are mapped to 8-dimensional numeric properties. For further details
about this transformation, see [15]. The relevant transformation is referred to as
motif-based alignment.

The result of this transformation is a data set containing 193 proteins, each
described by a bag of 8-dimensional feature vectors. Of these 193 proteins, 25
are labeled positive and 168 negative. The bags contain 35 to 189 vectors. Two
different experiments were carried out, the same as in [15]. In the first, simple
setting, the data set is divided in three parts, using two of them for training
and one for testing. The training setup for the ACCNs is the same as for the
musk data sets. The results are given in table 5. One can see that the results are
worse than for a multi-instance learner. Standard deviations are also quite large,
especially for the true positive rate. The skewness of the data set is probably
responsible for these problems.

Table 5. Results for 3-fold cross-validation on the Thioredoxin-fold proteins data set.
True positive and true negative rates are given, together with the standard deviation
over ten runs for ACCNs. MIL denotes a multi-instance learner and this result was
reported in [15].

TP TN

MIL 0.74 0.88
ACCN 0.614 (0.147) 0.838 (0.071)

Results were also obtained for a second, more difficult experiment carried out
in [15], in which 5 of the 25 positive proteins were removed, retaining only the 20
most dissimilar ones. The negative examples are divided in 8 folds, the positive
examples in 20 folds of 1 example each. A jack-knife test is performed, taking
one of the negative folds and one of the positive folds as test set, the other 19
positive folds and one of the negative folds as training set. This yields a total
of 160 experiments. Results for this experiment are shown in table 6. The true
positive rate is better now than for MIL, but the true negative rate is worse.
Overall, the situation seems to be more or less the same as for the musk data sets
where it was also not possible to achieve the same accuracy as multi-instance
methods.

3.5 Financial

For this experiment, the financial data set of the discovery challenge organized at
PKDD’99 and PKDD’00 is used [16]. The data set contains 8 different relations
in total and the goal is to classify loans as good or bad. There are 234 loans, 203
of which are good and 31 bad. This means that the default accuracy is already
86.8%. Each loan is linked to an account and for every account there is a bag
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Table 6. Results for jack-knife tests on the Thioredoxin-fold proteins data set. True
positive and true negative rates are given, together with the standard deviation over
all 160 experiments for ACCNs. MIL stands for a multi-instance learner and this result
was reported in [15].

TP TN

MIL 0.75 0.75
ACCN 0.850 (0.035) 0.681 (0.028)

Table 7. Results on the financial data set using 10-fold cross-validation. Results for
FORF-LA, DINUS-C, RELAGGS and PROGOL are obtained from [17] and [3].

accuracy

FORF-LA 90.8 (1.7)
DINUS-C 85.1 (10.3)
RELAGGS 88.0 (6.5)
PROGOL 86.3 (7.1)

ACCN 87.2 (2.3)

of transactions. The number of transactions varies between 93 and 594. Only
these bags will be used by the ACCNs to learn a classification of the loans, all
the other information is ignored because we only work with a single bag for each
data instance. It can be hoped however that these transactions contain the most
important information to learn the target function. The experiments were done
using 10-fold cross-validation. Results are summarized in table 7. The accuracy
for the ACCNs is not significantly higher than the default accuracy, but neither
is the accuracy of the other methods, except FORF-LA. As said before, these
other methods also use more information than only the bags of transactions.

4 Conclusion

In this paper, a method for learning functions over bags with neural networks has
been proposed. The method is based on cascade-correlation networks, extended
with aggregation units that are able to process bags of vectors. This yields a
general framework, extendable with new types of units if necessary.

Experimental results on artificial data sets are encouraging and indicate that
this method is indeed capable of learning a wide variety of aggregate functions
over bags. Compared with recurrent networks on these data sets, ACCNs perform
significantly better, especially when the size of the bags is large. Experiments
on real-world data sets show that the method performs still reasonably well in
the multi-instance setting, although not as well as specific methods for this kind
of problems. Some properties of these data sets might make it more difficult to
train ACCNs on this data. The result for the financial data set is not that good,
but similar to other methods like RELAGGS and FORF.
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Abstract. An outerplanar graph is a planar graph which can be em-
bedded in the plane in such a way that all of vertices lie on the outer
boundary. Many chemical compounds are known to be expressed by out-
erplanar graphs. We proposed a block preserving outerplanar graph pat-
tern (bpo-graph pattern, for short) as a graph pattern common to a set of
outerplanar graphs like a dataset of chemical compounds. In this paper,
firstly we give a polynomial time algorithm for finding a minimally gen-
eralized bpo-graph pattern explaining a given set of outerplanar graphs.
Secondly we give a pattern mining algorithm for enumerating all maxi-
mal frequent bpo-graph patterns in a set of outerplanar graphs. Finally,
in order to show the performance of the pattern mining algorithm, we
report experimental results on chemical datasets.

Keywords: pattern discovery, graph structured pattern, inductive in-
ference, outerplanar graph, graph mining.

1 Introduction

Large amount of data having graph structures, called semi-structured data, such
as map data, CAD, biomolecular, chemical molecules, the World Wide Web are
stored in databases. For example, Web documents and almost chemical com-
pounds in NCI dataset [4], which is one of popular graph mining datasets, are
known to be expressed by ordered trees and outerplanar graphs, respectively.
An outerplanar graph is a planar graph which can be embedded in the plane in
such a way that all of vertices lie on the outer boundary. In Fig. 1, we give five
graphs G, G1, G2, G3, G4 as examples of outerplanar graphs.

In the fields of data mining, many researchers have been developing graph min-
ing techniques based on computational and algorithmic learning theory. Horváth
et al. [3] proposed an efficient graph mining algorithm for enumerating all fre-
quent subgraph patterns, called d-tenuous outerplanar graphs, in a given set of
outerplanar graphs. In [8], we introduced a graph pattern, called a block preserv-
ing outerplanar graph pattern (bpo-graph pattern, for short), having an outer-
planar graph structure and structural variables. A variable is a list of at most 2

F. Železný and N. Lavrač (Eds.): ILP 2008, LNAI 5194, pp. 330–347, 2008.
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Outerplanar graph G1 Outerplanar graph G2
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Fig. 1. Outerplanar graphs G, G1, G2, G3, G4 and bpo-graph patterns g, f . A variable
is drawn by a box with lines to its elements. The label inside a box represents the
variable label of the variable.

vertices and can be replaced with an arbitrary connected outerplanar graph. In
Fig. 1, as examples of bpo-graph patterns, we give a bpo-graph pattern f having
only one variable labeled with x and a bpo-graph pattern g having variables
(v1, v2) and (v3) labeled with x and y, respectively. Moreover, the outerplanar
graph G is obtained from g by replacing variables (v1, v2) and (v3) with outer-
planar graphs G1 and G2, respectively. In [8], we proposed a polynomial time
matching algorithm for deciding, given an outerplanar graph G and a bpo-graph
pattern p, whether or not G is obtained from p by replacing all variables in p with
certain connected outerplanar graphs, and by using the matching algorithm, we
gave an Apriori-like algorithm for enumerating all frequent bpo-graph patterns
in a given finite set of outerplanar graphs. Unfortunately, since the number of
frequent graph patterns with respect to a given set of outerplanar graphs is huge
in general, the practical time complexity of the graph mining algorithm tends
to be quite high.

The purpose of this paper is to present an efficient algorithm for enumerating
all meaningful frequent bpo-graph patterns from a given finite set of outerplanar
graphs. A bpo-graph pattern p is said to be minimally generalized with respect to
a given finite set S of outerplanar graphs if S ⊆ L(p) and there is no bpo-graph
pattern q such that S ⊆ L(q) � L(p), where for a bpo-graph pattern g, L(g) de-
notes the set of all outerplanar graphs obtained from g by replacing all variables
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in g with arbitrary connected outerplanar graphs. Hence, it is natural that a
minimally generalized bpo-graph pattern is more suitable for explaining a given
set of outerplanar graphs. For example, since there exist bpo-graph patterns like
g in Fig. 1 such that {G, G3, G4} ⊆ L(g) � L(f), the bpo-graph pattern f in
Fig. 1 is not minimally generalized with respect to the set {G, G3, G4}, where
G, G3, G4 are in Fig. 1. Moreover, since the bpo-graph pattern f matches all
outerplanar graphs except outerplanar graphs consisting of only one vertex, we
can see that f is meaningless and g is a more meaningful knowledge represen-
tation than f . Based on this idea, first of all, we consider a problem of finding
a minimally generalized bpo-graph pattern explaining a given set of outerpla-
nar graphs. Then, by presenting a polynomial time algorithm for solving this
problem, we show that the class of bpo-graph pattern languages is polynomial
time inductively inferable from positive data. Secondly, in order to achieve our
purpose of this paper, we present an Apriori-like algorithm for enumerating all
maximal frequent bpo-graph patterns for a given set of outerplanar graphs based
on our first result in computational learning theory. Finally, in order to show the
performance of the pattern mining algorithm, we report experimental results on
subsets of NCI chemical dataset [4].

As related works, we proposed an interval graph pattern and presented a poly-
nomial time algorithm for finding a minimally generalized interval graph pattern
explaining a given finite set of interval graphs [14]. In the framework of induc-
tive inference, we gave polynomial time learning algorithms for tree patterns
with internal structured variables [11]. In [12], Takami et al. proposed a polyno-
mial time learning algorithm for two-terminal series parallel graph patterns. In
the framework of exact learning model, Okada et al. [7] showed polynomial time
learnabilities of finite unions of graph structured datasets.

This paper is organized as follows. In Section 2, we define a bpo-graph pattern
as an outerplanar graph having structured variables a minimally generalized bpo-
graph pattern. In Section 3, we propose a polynomial time algorithm for finding
one of minimally generalized bpo-graph patterns explaining a given set of outer-
planar graphs. In Section 4, we propose a pattern mining algorithm for enumer-
ating all maximal frequent bpo-graph patterns in a set of outerplanar graphs. In
Section 5, lastly, we evaluate the performance of our pattern mining algorithm.

2 Graph Pattern

Let Λ and Δ be two alphabets. Each symbol in Λ and Δ is called a vertex label
and an edge label , respectively. Let G be an undirected graph. In this paper, G
is called a (Λ, Δ)-labeled graph if all vertices and edges in G are labeled with
symbols in Λ and Δ, respectively. We denote by V (G) the set of vertices in G and
by E(G) the set of edges in G. A graph pattern is defined as a graph-structured
pattern with internal variables, which represents characteristic common struc-
tures in graph-structured data. In [13], we introduced a general graph-structured
pattern, called a term graph, in order to design efficient algorithms for computa-
tional problems on graphs. We define a class of graph patterns as a special class
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of term graphs as follows. Let X be an infinite alphabet where X ∩ (Λ∪Δ) = ∅,
whose elements are called variable labels.

Definition 1 (Graph pattern). Let G be a (Λ, Δ)-labeled graph. A variable
of G is a list of different vertices of V (G), which is denoted by (v1, . . . , v�) (� ≥ 1),
where vi �= vj if i �= j (1 ≤ i, j ≤ �). The vertices in a variable are called ports
of the variable. Each variable is labeled with a variable label in X . If a variable
has only one port, it is called a terminal variable, otherwise called an internal
variable. A triplet p = (V, E, H) is called a (Λ, Δ)-labeled graph pattern if (V, E)
is a (Λ, Δ)-labeled graph and H is a set of variables of (V, E).

For a set or a list S, we denote by |S| the number of members in S. Below (Λ, Δ)-
labeled graphs and (Λ, Δ)-labeled graph patterns are simply called graphs and
graph patterns, respectively, when the label sets are clear from the context.
Let p be a graph pattern. We denote by V (p), E(p) and H(p) the sets of all
vertices, edges and variables of p, respectively. And we denote by λp(v) the label
of v ∈ V (p) of p and by δp(e) the label of e ∈ E(p) of p. The degree of v, denoted
by dp(v), is the total sum of edges adjacent to v and internal variables including v,
that is dp(v) = |{{u, v} | {u, v} ∈ E(p)}∪{h | h ∈ H(p), |h| ≥ 2, h contains v}|.

A graph pattern p is called a linear (or regular) graph pattern if all variables
in H(p) have mutually distinct variable labels in X . Let p and q be linear graph
patterns. We say that p is isomorphic to q, denoted by p ≡ q, if there exists a
bijection ψ : V (p) → V (q) such that (1) for any v ∈ V (p), λp(v) = λq(ψ(v)),
(2) {u, v} ∈ E(p) if and only if {ψ(u), ψ(v)} ∈ E(q), (3) for any {u, v} ∈ E(p),
δp({u, v}) = δq({ψ(u), ψ(v)}), and (4) for � ≥ 1, (v1, v2, . . . , v�) ∈ H(p) if and
only if (ψ(v1), ψ(v2), . . . , ψ(v�)) ∈ H(q).

Assumption. All graph patterns in this paper are linear. Then we call linear
graph patterns graph patterns simply.

Definition 2 (Binding). Let p and q be graph patterns and x a variable label
in X . Let σ = (u1, . . . , uk) be a list of k distinct vertices in q. The form x :=
[q, σ] is called a binding for x. We can apply a binding x := [q, σ] to a variable
h = (v1, . . . , v�) in p which is labeled with x if the binding x := [q, σ] satisfies
that (1) � = k and (2) λq(ui) = λp(vi) for all i (1 ≤ i ≤ � = k). A new graph
pattern p{x := [q, σ]} is obtained by applying the binding x := [q, σ] to p in
the following way. Let h = (v1, . . . , v�) be a variable in p with the variable label
x. Let q′ be one copy of q and u′

1, . . . , u
′
k the vertices of q′ corresponding to

u1, . . . , uk of q, respectively. For the variable h = (v1, . . . , v�), we attach q′ to
p by removing the variable h from Hp and by identifying the vertices v1, . . . , v�

with the vertices u′
1, . . . , u

′
k of q′, respectively.

A substitution θ is a finite collection of bindings {x1 := [q1, σ1], · · · , xm :=
[qm, σm]}, where x1, . . . , xm are mutually distinct variable labels in X . A graph
pattern pθ is obtained by applying all the bindings x1 := [q1, σ1], . . . , xm :=
[qm, σm] on p simultaneously.

Below we regard all graphs as graph patterns without variables. We say that
a graph pattern p matches a graph G if there exists a substitution θ such that
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pθ ≡ G. As an example of graph patterns, in Fig. 1, we give a graph pattern g
having variables (v1, v2) and (v3) labeled with x and y, respectively. The graph
pattern g{x := [G1, (u1, u2)], y := [G2, (u3)]} is isomorphic to the graph G in
Fig. 1 where G1 and G2 are graphs in Fig. 1, and therefore g matches G. The
matching problem for a graph pattern p and a graph G is to decide whether
or not p matches G. In general, this problem is NP-complete. It remains NP-
complete if G is a tree and p contains internal variables which have more than
3 ports [6]. If G is a tree and any variable in p has just 2 ports, the matching
problem is computable in polynomial time [5].

Let G be a connected graph. G is said to be biconnected if for any two vertices
in V , there exists a cycle which contains the two vertices. For a subset U of V ,
an induced subgraph by U , denoted by G[U ], is a subgraph G[U ] = (U, {{u, v} ∈
E(V ) | both u and v are in U}). An induced subgraph G[U ] is said to be a block
if it is biconnected and there is no proper superset U ′ of U such that G[U ′] is
biconnected. An edge which does not belong to any block is called a bridge. For
a vertex v of a connected graph G, v is called a cutpoint if G[V (G) − {v}] is
unconnected. An outerplanar graph is a planar graph which can be drawn in
the plane in such a way that all vertices have a border with the outer face. We
denote by O the set of all outerplanar graphs.

In order to make our discussion simpler, we assume that all outerplanar graphs
are connected.

Definition 3 (Block preserving outerplanar graph patterns). A graph
pattern p is a block preserving outerplanar graph pattern, bpo-graph pattern for
short, if p satisfies the following three conditions.

1. Any internal variable has just 2 ports.
2. A graph Gp = (V (p), E(p) ∪ {{u, v} | (u, v) ∈ H(p)}) is outerplanar.
3. Each port of any internal variable is either a cutpoint or a vertex of degree

1 in Gp.

Since all internal variables in a bpo-graph pattern are bridges in Gp, we call an
internal variable in a bpo-graph pattern a bridge variable. For example, a graph
pattern g in Fig. 1 is a bpo-graph pattern and a variable (v1, v2) of g is a bridge
variable. We denote by OP the set of all bpo-graph patterns.

We have the following theorem.

Theorem 1 ([8]). The matching problem for a bpo-graph pattern p ∈ OP and
an outerplanar graph G ∈ O is computable in O(nN2

√
dmax) time, where n and

N are the numbers of vertices of p and G, respectively, and dmax is the maximum
degree of G.

For a bpo-graph pattern p ∈ OP , the bpo-graph pattern language of p is defined
as L(p) = {G ∈ O | there exists a substitution θ such that G ≡ pθ}. Moreover
the class of bpo-graph pattern languages is defined as LOP = {L(p) | p ∈ OP}.
Below we assume that there exists no terminal variable which has a common
port with a bridge variable. This assumption is reasonable because if it exists,
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Fig. 2. Labeled vertex addition: The upper figure shows the case of a terminal variable
and the lower shows the case of a bridge variable

any binding to it can be supplemented in a binding to the bridge variable. For
a bpo-graph pattern p ∈ OP and a set of outerplanar graphs S ⊆ O, p is said to
be a minimally generalized bpo-graph pattern explaining S if S ⊆ L(p) and there
is not a bpo-graph pattern q ∈ OP such that S ⊆ L(q) � L(p).

3 A Polynomial Time Algorithm for Finding a Minimally
Generalized BPO-Graph Pattern

Given a positive integer K and a set of outerplanar graphs S, the problem of
deciding whether or not there is a minimally generalized bpo-graph pattern p
such that the number of variables in p is at most K is NP-complete even if all
outerplanar graphs in S are trees [10]. In this section, we give a polynomial time
algorithm for finding one of minimally generalized bpo-graph patterns explain-
ing a given set of outerplanar graphs. First of all, we define the following four
procedures for a bpo-graph pattern p and a specified variable h ∈ H(p), which
are called refinement operators . Let Λ′ and Δ′ be finite subsets of Λ and Δ,
respectively. And let Υ be the finite set of blocks.

1. Λ′-Labeled Vertex Addition
Let v be a new vertex which has a vertex label in Λ′, and u′ and w′ the other
two new vertices. If h is a terminal variable (u), return p{x(h) := [q, (u′)]}
where q = ({u′, v}, ∅, {(u′, v), (u′), (v)}). If h is a bridge variable (u, w), re-
turn p{x(h) := [q, (u′, w′)]} where q = ({u′, v, w′}, ∅, {(u′, v), (v, w′), (v)})
(see Fig. 2).

2. Υ -Block Replacement
Let B be a bpo-graph pattern (V (B), E(B), H(B)) where (V (B), E(B)) is
a block in Υ and H(B) = {(v) | v ∈ V (B)}. Let u′ and w′ be distinct
two vertices in V (B). If h is a terminal variable (u) and λB(u′) = λp(u),
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Fig. 3. Block replacement: The upper figure shows the case of a bridge variable and
the lower shows the case of a terminal variable

Fig. 4. An example set of outerplanar graphs: We assume that the edges with no label
have a unique edge label except for α, β and γ

return p{x(h) := [B, (u′)]}. If h is a bridge variable (u, w), λB(u′) = λp(u)
and λB(w′) = λp(w), return p{x(h) := [B′, (u′, w′)]} where B′ = (V (B),
E(B), H(B) − {(u′), (v′))}) (see Fig. 3).

3. Δ′-Labeled Edge Replacement
Let u′ and w′ be two new vertices and {u′, w′} a new edge which has
an edge label in Δ′. If h is a bridge variable (u, w), return p{x(h) :=
[({u′, w′}, {{u′, w′}}, ∅), (u′, w′)]}.

4. Terminal Variable Deletion
Let u′ be a new vertex. If h is a terminal variable (u), return p{x(h) :=
[({u′}, ∅, ∅), (u′)]}.

Next we give an algorithm for finding a minimally generalized bpo-graph
pattern by using the above four refinement operators.
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Fig. 5. An example process of finding a minimally generated bpo-graph pattern ex-
plaining an example set of outerplanar graphs in Fig. 4

Algorithm 1
Input: a nonempty set of outerplanar graphs S ⊆ O.
Output: a minimally generalized bpo-graph pattern explaining S.

Step 0. Let ΛS , ΔS , and ΥS be the sets of vertex labels, edge labels, and blocks,
respectively, which appear in all outerplanar graphs in S.

Step 1. Let p = ({u}, ∅, {(u)}) where u is a new vertex whose label is in ΛS .
Let H = {(u)}.

Step 2. Let h be a variable in H . Let p′ be a bpo-graph pattern which is
obtained from p by applying either ΛS-Labeled Vertex Addition or ΥS-
Block Replacement to h. If p′ explains S, update p to p′. If h is a bridge
variable, when an operator succeeds or all operators fail, delete h from H .
If h is a terminal variable, only when all operators fail, delete h from H . If
there are variables newly added to p by the above refinement operators, the
variables are also added to H . Repeat this step until H becomes empty.

Step 3. For each bridge variable h in p, if a bpo-graph pattern p′ obtained from
p by applying ΔS-Labeled Edge Replacement to h explains S, update p
to p′.

Step 4. For each terminal variable h in p, if a bpo-graph pattern p′ obtained
from p by applying Terminal Variable Deletion to h explains S, update
p to p′.
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We have the following lemma.

Lemma 1. If a set of edge labels is infinite, for a given nonempty set of outer-
planar graphs S, Algorithm 1 outputs a minimally generalized bpo-graph pattern
explaining S.

Proof. Let p be a bpo-graph pattern computed by Algorithm 1 for an input S.
Let p2 and p3 be temporary bpo-graph patterns of p immediately after Steps
2 and 3 respectively. Since no new vertex is added at Steps 3 and 4, |V (p)| =
|V (p2)| = |V (p3)| holds. We show that if there exists a bpo-graph pattern q such
that S ⊆ L(q) ⊆ L(p), q ≡ p holds. We note that no bpo-graph pattern has a
terminal variable connecting to a bridge variable with a common port.

Since L(q) ⊆ L(p), |V (q)| ≥ |V (p2)| holds. Let c be an edge label which
does not belong to ΔS . Let θ be a substitution for p which replaces all bridge
variables with edges of label c and all terminal variable with single vertices. Since
qθ ∈ L(p) and L(p) ⊆ L(p2), there is a substitution θ2 for p2 such that qθ ≡ p2θ2.
All bindings in θ2 which contain an edge of label c must be bindings for bridge
variables in p2. Let θx

2 be a substitution which is obtained from θ2 by replacing
all edges appearing in θ2 with bridge variables and removing all bindings for
terminal variables in θ2. Since S ⊆ L(q) ⊆ L(p2θ

x
2 ) ⊆ L(p2) and refinement

operators ΛS-Labeled Vertex Addition and ΥS-Block Replacement can
not apply to p2 any more, all bpo-graph patterns in bindings in θx

2 are bpo-
graph patterns consisting of two vertices and one bridge variable connecting the
two vertices. Therefore |V (q)| = |V (p2)|Cand then we have |V (q)| = |V (p)|.

Since L(q) ⊆ L(p) ⊆ L(p3), there is a substitution θ3 for p3 such that qθ ≡
p3θ3. Let θx

3 be a substitution which is obtained from θ3 by replacing all edges
of label c in θ3 with bridge variables and removing all bindings for terminal
variables in θ3. We have p3 ≡ p3θ

x
3 , and then there is a bijection ζ : V (q)→ V (p3)

satisfying the following conditions.

1. For all v ∈ V (q), λq(v) = λp3(ζ(v)).
2. If (v, v′) ∈ H(q) (v �= v′) then (ζ(v), ζ(v′)) ∈ H(p3) holds.
3. If {v, v′} ∈ E(q) then either {ζ(v), ζ(v′))} ∈ E(p3) with δp3({ζ(v), ζ(v′)}) =

δq({v, v′}), or (ζ(v), ζ(v′)) ∈ H(p3).

If {v, v′} ∈ E(q) and (ζ(v), ζ(v′)) ∈ H(p3), a bpo-graph pattern obtained from p3

by substituting an edge of label δq({v, v′}) for (ζ(v), ζ(v′)) also explains S. There-
fore, since ΔS-Labeled Edge Replacement can not apply to p3 any more, if
{v, v′} ∈ E(q) then {ζ(v), ζ(v′)} ∈ E(p3) and δp3({ζ(v), ζ(v′)}) = δq({v, v′})
holds.

Let d (d �= c) be an edge label which is not in ΔS . Let θ′ be a substitution
for q such that it substitutes edges of label c for all bridge variables and edges
of label d with a new vertex for all terminal variables. In qθ′, there is no edge
of label d which is adjacent to an edge of label c . Since qθ′ ∈ L(p), there is a
substitution θ4 for p such that qθ′ ≡ pθ4. Since all terminal variables which are
adjacent to bridge variables are removed by Terminal Variable Deletion, all
bindings in θ4 which contain edges of label d are applied to terminal variables.
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Let θx
4 be a substitution obtained from θ4 so that all edges of label c in bindings

in θ4 are replaced with bridge variables, and all bindings to terminal variables
are removed. Then p ≡ pθx

4 . Moreover since at Step 4, terminal variables are
removed from p as much as possible while p explains S, we have q ≡ p. �

Lemma 2. For a nonempty set of outerplanar graphs S, Algorithm 1 outputs
a bpo-graph pattern in polynomial time with respect to the total sum of numbers
of vertices and edges in S.

Proof. It is easy to see that for any outerplanar graph G, |E(G)| ≤ 2|V (G)| − 3.
Then, for any bpo-graph pattern p, we have that |E(p)|+ |H(p)| ≤ 3|V (p)| − 3.
Let N be the total sum of numbers of vertices of all outerplanar graphs in S. Let
Nmin = min{|V (G)| | G ∈ S}. The sets of labels ΛS and ΔS can be computed in
O(NminN ) time. And by using a linear time algorithm for finding all blocks in a
graph [1], ΥS can be also computed in O(NminN ) time. Let ΥS = {B1, . . . , Bb}
(b ≥ 0). It is easy to see that

∑b
i=1 |V (Bi)| = O(Nmin). Since the number of

vertices of the final output bpo-graph pattern is not more than Nmin, during Step
2, ΛS-Labeled Vertex Addition and ΥS-Block Replacement are applied to
p at most O(N2

min|ΛS |) = O(N3
min) times and O(N2

min

∑b
i=1 |V (Bi)|2) = O(N4

min)
times, respectively. During Steps 3 and 4, ΔS-Labeled Edge Replacement
and Terminal Variable Deletion are applied to p at most O(Nmin|ΔS |) =
O(N2

min) times and O(Nmin) times, respectively. For each refinement operation,
we have to decide whether or not a temporary bpo-graph pattern explains S,
and from Theorem 1, it needs at most O(NminN 2

√
dmax) time where dmax is

the maximum degree of outerplanar graphs in S. Then, the total computational
time of Algorithm 1 is O(N5

minN 2
√

dmax). �

From Lemmas 1 and 2, we have the following theorem.

Theorem 2. If a set of edge labels is infinite, the problem for finding a mini-
mally generalized bpo-graph pattern explaining a given set of outerplanar graphs
S is computable in polynomial time with respect to the size of S.

From Theorems 1 and 2, we can conclude that LOP is polynomial time induc-
tively inferable from positive data by using the theorems in [2,9].

Theorem 3. If a set of edge labels is infinite, LOP is polynomial time induc-
tively inferable from positive data.

4 Pattern Enumeration Algorithm for Maximal Frequent
BPO Graph Pattern Problem

Let S be a finite subset of O and p a bpo-graph pattern in OP . Then, we
denote by OS(p) the set of outerplanar graphs in S which are matched by p,
called occurrence set of p with respect to S. The frequency of p with respect to
S, denoted by suppS(p), is defined as suppS(p) = |OS(p)|/|S|. Let t be a real
number where 0 < t ≤ 1. A bpo-graph pattern p ∈ OP is t-frequent with respect
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Algorithm: GenPattern;
Input: a set of outerplaner graphs S and a frequency threshold t(0 < t ≤ 1);
Output: the set of all t-frequent bpo-graph patterns w.r.t. S;
begin
1: Construct Lt

0 and Lt
1 w.r.t. S;

2: Let Lb be the set of all bpo-graph patterns in Lt
1 which have no bridge.

3: k := 2;
4: while Lt

k−1 �= ∅ do begin
5: Lt

k := ∅;
6: M :=ExtractGPattern(Lt

k−1);
7: M ′(⊆ {(p, OS(p)) | p ∈ OP}) :=GenPatternApriori(M,S, t);
8: foreach (p, OS(p)) ∈ M ′ do begin
9: C :=GenRefinedPattern(p,Lt

k−1, Lb);
10: L :=CountFrequency(C, OS(p), t|S|);
11: Lt

k := Lt
k ∪ L

12: end;
13: k := k + 1
14: end;
15: return

⋃
k≥0 Lt

k

end.

Fig. 6. An algorithm for generating all frequent bpo-graph patterns with respect to a
given set of outerplaner graphs

to S if suppS(p) ≥ t. We call this real number t a frequency threshold. A bpo-
graph pattern p ∈ OP is a maximal t-frequent bpo-graph pattern with respect
to S if p is t-frequent and there is no t-frequent bpo-graph pattern p′ satisfying
L(p′) � L(p). First, we give an algorithm for computing the following problem.

Frequent BPO-Graph Pattern Problem
Input: A finite set of outerplanar graphs S ⊂ O and a frequency threshold t
(0 < t ≤ 1).
Output: The set of all t-frequent bpo-graph patterns in OP with respect to S.

For an integer k ≥ 0, a k-bpo-graph pattern is defined to be a bpo-graph pattern
such that the total sum of the numbers of blocks, bridge variables, and bridges
is equal to k. Let S be a set of outerplanar graphs in O and t a real number
where 0 < t ≤ 1. Let Lt

k be the set of all t-frequent k-bpo-graph patterns
with respect to S. The algorithm in this section is an improved version of the
algorithm presented in [8], which generates Lt

k+1 from Lt
k for any k ≥ 1 in a

breadth-first manner. Below we attach a terminal variable to each vertex of any
generated bpo-graph pattern and do not remove the terminal variable from it,
because we avoid to generate a huge number of patterns by the mining process.
Then we assume that each vertex of any generated bpo-graph pattern has a
terminal variable adjacent to it. We show the pattern enumeration algorithm
GenPattern in Fig. 6.
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First we describe the detail of the 1st line of the algorithm GenPattern, and
then give explanations of procedures GenPatternApriori, GenRefinedPat-

tern and CountFrequency at lines 4–14 of GenPattern.

Construct Lt
0 and Lt

1 w.r.t. S: Lt
0 is the set of t-frequent 0-bpo-graph patterns

consisting of a single vertex and a terminal variable connecting to the vertex. Lt
1

is the set of t-frequent 1-bpo-graph patterns p of the following three types: (a) p =
(V (B), E(B), {(u) | u ∈ V (B)}) where B is a block, and for two vertices u and
v, (b) p = ({u, v}, {{u, v}}, {(u), (v)}) and (c) p = ({u, v}, ∅, {(u), (v), (u, v)}).
Lt

0 and Lt
1 are computable in polynomial time with respect to the size of S.

For a set of bpo-graph patterns L and a bpo-graph pattern p ∈ L, we say that
p is a most generalized bpo-graph pattern in L if there does not exist a bpo-graph
pattern q ∈ L such that L(p) � L(q). We have the following lemma.

Lemma 3. A bpo-graph pattern p ∈ Lt
k is the most generalized bpo-graph pattern

in Lt
k if and only if there is no bridge in p and any block of p has at least 3

cutpoints.

Proof. If there is a bridge, or a block in p which has at most 2 cutpoints, a bpo-
graph pattern q obtained from p by replacing the bridge or block with a bridge
variable is in Lt

k and satisfies L(p) � L(q). Conversely we suppose that q is the
most generalized bpo-graph pattern in Lt

k such that L(p) � L(q). Let G be an
outerplanar graph which is obtained from p by replacing all bridge variables with
labeled edges, and all terminal variables with single vertices. Since G ∈ L(q),
there is a substitution θ such that G ≡ qθ. Since both p and q are k-bpo-graph
patterns, any binding in θ for a bridge variable is to replace it with a graph
consisting of either one bridge or one block. Therefore G has a bridge or a block
which has at most 2 cutpoints. By the construction of G, p also has a bridge or
a block which has at most 2 cutpoints. �

From Lemma 3, any k-bpo-graph pattern which is a subgraph pattern of the
most generalized bpo-graph pattern in Lt

k+1 satisfies that (1) there is no bridge
and (2) each block has at least 2 cutpoints. Procedure ExtractGPattern

extracts from Lt
k the set of all bpo-graph patterns satisfying (1) and (2).

Procedure GenPatternApriori. This procedure computes the set of all
pairs of most generalized bpo-graph pattern in Lt

k+1 and its occurrence set with
respect to S, from the set of frequent k-bpo-graph patterns. We use a similar
method to the Apriori-like pattern enumeration algorithm in [8] in order to
generate a superset of the set of the most generalized bpo-graph patterns in
Lt

k+1 and remove all bpo-graph patterns from the superset which has a block
having at most 2 cutpoints. This set is computable in polynomial time w.r.t.
the size of the output of ExtractGPattern, S and t. It is the same time
complexity as that of the algorithm in [8].

For a k-bpo-graph pattern p (k ≥ 2), we say that pt is a terminal bpo-subgraph
pattern if pt is a 1-bpo-graph pattern and contains exactly one cutpoint of p. We
denote by p+ pt the (k− 1)-bpo-subgraph pattern obtained from p by removing
all vertices of p except for the cutpoint of pt.
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Procedure GenRefinedPattern(p,L, Lb);
Input: a bpo-graph pattern p and two sets of bpo-graph patterns L and Lb;
output: the set of bpo-graph patterns p′ such that L(p′) ⊆ L(p);
begin
1: C := {p}; D1 := {p}; D2 := ∅;
2: while D1 �= ∅ do begin
3: foreach p′ ∈ D1 do begin
4: D :=ReplaceVariable(p′, L, Lb); D2 := D2 ∪ D
5: end;
6: C := C ∪ D2; D1 := D2; D2 := ∅
7: end;
8: output C
end;

Procedure ReplaceVariable(p,L, Lb);
Input: a bpo-graph pattern p and sets of bpo-graph patterns L and Lb;
begin
1: C := ∅;
2: foreach ((u1, u2), q) ∈ H(p) × Lb do begin
3: foreach (v1, v2) ∈ V (q) × V (q) do begin;
4: if v1 �= v2 ∧ λp(u1) = λq(v1) ∧ λp(u2) = λq(v2) then begin
5: p′ := p{x := [q, (v1, v2)]}; //Let x be a variable label of (u1, u2).
6: if p′ � pt ∈ L for all pt ∈ TB(p′) then C := C ∪ {p′}
7: end
8: end
9: end;
10: output C
end;

Fig. 7. Procedure GenRefinedPattern: We denote by TB(p) the set of all terminal
bpo-subgraph patterns of p

Procedure GenRefinedPattern. We describe this procedure in Fig.7. Gen-

RefinedPattern receives one of most generalized t-frequent k-bpo-graph pat-
tern p and Lt

k−1, and returns a superset of the set of t-frequent k-bpo-graph
patterns p′ such that L(p′) ⊆ L(p). For a bpo-graph pattern p′ which has �
bridge variables (� ≥ 1) , ReplaceVariable proceeds to generate bpo-graph
patterns p′′ which have � − 1 bridge variables, in a similar way to refinement
operators Labeled Edge Replacement and Block Replacement in Sec. 3.
And then for the generated bpo-graph pattern p′′, it decides whether or not
p′′ + pt is in Lt

k−1 for each terminal bpo-subgraph pattern pt of p′′. If p′′ + pt is
not in Lt

k−1, p′′ is not t-frequent. This is a useful heuristic procedure to make a
candidate set for Lt

k smaller. It is easy to see the next lemma.

Lemma 4. For the most generalized k-bpo-graph pattern p, GenRefinedPat-

tern generates a set of k-bpo-graph patterns p′ such that L(p′) ⊆ L(p) and
p′ + pt is t-frequent for each terminal bpo-subgraph pattern pt of p′.
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Procedure CountFrequency(C, U, τ );
Input: a set of bpo-graph patterns C, a set of outerplaner graphs U ,

and a real number τ ;
output: the set of bpo-graph patterns;
begin
1: Let Ci (0 ≤ i ≤ k) be the set of all bpo-graph patterns in C which have

exactly i bridge variables;
2: L := ∅;
3: foreach p ∈ C0 do begin
4: OU (p) :=CountOccSet(p,U);
5: if |OU (p)| ≥ τ then L := L ∪ {p}
6: end;
7: for i := 1 to k do begin
8: foreach p ∈ Ci do begin
9: W := ∅;
10: foreach p′ ∈ Ci−1 such that L(p′) ⊆ L(p) do begin
11: W := W ∪ OU (p′)
12: end;
13: OU (p) :=CountOccSet(p,U − W ) ∪ W ;
14: if |OU (p)| ≥ τ then L := L ∪ {p}
15: end
16: end;
17: output L
end;

Fig. 8. An algorithm for counting frequencies of given bpo-graph patterns

procedure CountFrequency. We describe this procedure in Fig.8. This pro-
cedure exactly selects all t-frequent k-bpo-graph patterns from the output of
GenRefinedPattern. Let p be the most generalized k-bpo-graph pattern of
Lt

k and U = OS(p). Let C be the output set of GenRefinedPattern for an
input p. Since any bpo-graph pattern p′ satisfies L(p′) ⊆ L(p), the occurrence set
of p′ with respect to S can be computed from U . If there is a bpo-graph pattern
p′′ ∈ C such that L(p′′) � L(p′) and the occurrence set W of p′′ has already
been computed, the occurrence set of p′ can be computed only from U −W . In
this way, we reduce the number of pattern matchings in this procedure.

First, CountFrequency computes all occurrence sets of bpo-graph patterns
in C which have no variable, and decide their frequencies (lines 3–6). The proce-
dure CountOccSet computes the occurrence set of a given bpo-graph pattern
p with respect to a given set of outerplanar graphs U . Next, for all i ≥ 1, this
procedure computes the occurrence sets of all bpo-graph patterns in C which
have i variables by using the occurrence sets of p′ which have i − 1 variables
(lines 7–16). Finally we have the following lemma and theorem.

Lemma 5. For the most generalized k-bpo-graph pattern p, CountFrequency

correctly outputs the set of all t-frequent k-bpo-graph patterns q such that
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L(q) ⊆ L(p). The procedure CountFrequency works in polynomial time with
respect to its input size.

Theorem 4. For a given finite set of outerplanar graphs S ⊂ O and a frequency
threshold t (0 < t ≤ 1), Algorithm GenPattern correctly computes the set of all
t-frequent bpo-graph patterns in OP with respect to S. Moreover, for any k ≥ 2,
Lt

k is correctly computed from Lt
k−1 in polynomial time with respect to the size

of Lt
k−1 by Algorithm GenPattern.

Next, we give procedures for computing the following problem.

Maximal Frequent BPO-Graph Pattern Problem
Input: A finite set of outerplanar graphs S ⊂ O and a frequency threshold t
(0 < t ≤ 1).
Output: The set of all maximal t-frequent bpo-graph patterns in OP with re-
spect to S.

Let M t
k be the set of all maximal t-frequent k-bpo-graph patterns with respect to

S. For a t-frequent bpo-graph pattern p, we decide whether or not p is maximal
t-frequent by using Labeled Vertex Addition, Block Replacement and
Labeled Edge Replacement in Sec. 3. For each bridge variable h of p, if at
least one bpo-graph pattern q which is obtained from p by applying either of the
above three refinement operators to h is t-frequent, p is not maximal t-frequent.
For more details, we computes M t

k by applying the following three maximality
tests on Lt

k and Lt
k+1 generated by GenPattern.

Test1: For a most generalized t-frequent k-bpo-graph pattern p, let R(p) be the
set of k-bpo-graph patterns generated by ReplaceVariable. If Lt

k ∩ R(p) �=
∅, we conclude that p is not maximal t-frequent. Let Δ0 and Υ0 be the sets
of all t-frequent edge labels and blocks appearing in S, respectively. This test
corresponds to Δ0-Labeled Edge Replacement and Υ0-Block Replacement
for each bridge variable of p. This maximality test can be done in the procedure
CountFrequency.

Test2: For a k-bpo-graph pattern p ∈ Lt
k, if there exists a (k + 1)-bpo-graph

pattern p′ ∈ Lt
k+1 which has p as its bpo-subgraph pattern, p is not maximal

t-frequent. Let Λ1 be the set of all vertex labels appearing in Lt
1. This test

corresponds to Λ1-Labeled Vertex Replacement for each terminal variable
of p. In order to do this maximality test easily, we make the bidirectional links
between p and all (k+1)-bpo-graph patterns p′ which have p as its bpo-subgraph
pattern. These links can be added when the if statement at line 6 of every
ReplaceVariable application is executed.

Test3: Let Λ2 be the set of all vertex labels of cutpoints of bpo-graph patterns
in Lt

2 consisting of exactly two bridge variables. For each bridge variable of p,
if at least one of (k + 1)-bpo-graph patterns p′ obtained from p by applying
Λ2-Labeled Vertex Addition to h is in Lt

k+1, p is not maximal t-frequent.
The next theorem can be proved in a similar way to Lemma 1.
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Theorem 5. Let p be a t-frequent bpo-graph pattern with respect to a given set of
outerplanar graphs S. If a set of edge labels is infinite, the above three maximality
tests correctly decide whether or not p is maximal t-frequent with respect to S.

S100, t = 0.5 S100, t = 0.3
k Ct

k Lt
k M t

k time(sec) time[8] Ct
k Lt

k M t
k time(sec) time[8]

0 10 4 0 0.03 0.03 10 4 0 0.03 0.03
1 53 10 0 0.1 0.1 53 15 0 0.1 0.1
2 32 23 0 0.5 1 72 39 5 1 1
3 155 96 3 5 8 253 146 2 6 8
4 320 280 8 4 13 626 555 6 5 18
5 757 713 4 8 42 1877 1798 16 14 72
6 1372 1332 15 11 102 5068 4996 21 28 276
7 1715 1696 15 14 211 12457 12390 39 55 1256
8 1374 1367 18 12 309 26352 26330 67 119 7431
9 606 606 34 6 222 46707 46677 27 241 49593

10 107 107 13 1 57 67940 67938 41 392 –
11 0 0 0 0.1 3 80945 80945 50 492 –
12 0 0 0 0 0 77220 77220 27 453 –
13 0 0 0 0 0 56164 56164 3 289 –
14 0 0 0 0 0 28744 28744 0 115 –
15 0 0 0 0 0 9112 9112 5 31 –
16 0 0 0 0 0 1360 1360 4 4 –
17 0 0 0 0 0 0 0 0 0.1 –

S100, t = 0.1 (k ≤ 11)
k Ct

k Lt
k M t

k time(sec) time[8]

0 10 5 0 0.03 0.03
1 63 24 0 0.1 0.1
2 150 99 8 1 1
3 503 296 17 6 9
4 1213 1041 8 6 20
5 4434 4128 17 18 93
6 15409 15010 19 47 524
7 49786 49379 60 118 4384
8 147859 147461 114 365 46995
9 401638 401296 248 1201 –

10 978292 978153 233 3814 –
11 2100705 2100696 – 11112 –

S10,000, t = 0.3
k Ct

k Lt
k M t

k time(sec)

0 37 4 0 0.3
1 499 16 0 3
2 79 51 9 173
3 266 149 6 742
4 498 415 17 1039
5 1038 961 35 1907
6 1962 1885 58 2980
7 3240 3137 156 4490
8 4379 4285 240 5530
9 4797 4723 342 5310

10 3554 3518 357 3692
11 1448 1424 172 1482
12 367 357 48 384
13 48 47 7 60
14 0 0 0 0

Fig. 9. Experimental results of Algorithm GenPattern for Lt
k (on S100 with t = 0.5,

0.3, 0.1 and on S10,000 with t = 0.3) on Windows XP Professional SP2, JDK 1.5,
Pentium D 2.80GHz, 2.00GB RAM
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5 Experimental Result

We have implemented our maximal frequent bpo-graph pattern mining algorithm
and tested on chemical datasets. In our experiments, we used two datasets S100

and S10,000, both of which consist of outerplanar molecular graphs from the NCI
database [4]. The datasets S100 and S10,000 contain 100 and 10,000 outerplanar
graphs, respectively. The results are given in Fig. 9. We experimented on S100

with respect to frequencies 0.5, 0.3 and 0.1, and on S10,000 with respect to fre-
quency 0.3. In the tables, Ct

k means the union of the sets of all k-bpo-graph
patterns outputted by GenRefinedPattern during the k-th iteration of the
while-loop at lines 4–14 in Algorithm GenPattern (see Fig. 6). We note that
the frequencies of elements in Ct

k except for the most generalized k-bpo-patterns
are not counted until CountFrequency starts. The average of |Ct

k|/|Lt
k| is

very close to 1. Therefore we succeed to reduce the runtime for computing the
frequencies of candidate k-bpo-graph patterns. The column specified with M t

k

shows the numbers of bpo-graph patterns in M t
k, which are found to be extremely

smaller than |Lt
k| for any frequency threshold.

The 4th column (resp. 5th column) in the tables shows the runtime in sec-
onds for the generation of Lt

k from Lt
k−1 by the pattern enumeration algorithm

proposed in this paper (resp. in [8]). We utilize only the most generalized (k−1)-
bpo-graph patterns from Lt

k−1 to generate candidates of t-frequent k-bpo-graph
patterns. Therefore the proposed algorithm becomes faster than the algorithm
in [8]. For example, for S100 with frequency threshold 0.3, the total runtime of
the algorithm in [8] for the generation of L0.3

9 from L0.3
0 is 58,655 sec. On the

other hand, the total runtime of the algorithm proposed in this paper is 467 sec,
which is reduced to about 1/125 of that of the algorithm in [8].

6 Conclusion and Future Works

We have considered a data mining problem of extracting structural features from
semi-structured data whose data can be expressed by outerplanar graphs. First,
we presented a polynomial time algorithm to find one of minimally generalized
bpo-graph patterns from a given finite set of outerplanar graphs. By using this
algorithm, we showed that the class of bpo-graph pattern languages is poly-
nomial time inductively inferable from positive data. Second, we presented an
Apriori-like algorithm for enumerating all maximal frequent bpo-graph patterns
with respect to a given finite set of outerplanar graphs. Finally, we evaluated
the performance of our graph mining algorithm by experiments on chemical
datasets.

We are now studying the polynomial time learnabilities of more general classes
than bpo-graph pattern languages. As future works, toward efficient graph min-
ing systems for real-world databases, we will consider graph pattern mining
problems on several other classes of graphs like planar graphs, two-terminal se-
ries parallel graphs, and so on.
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